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Daniel CIUIU!

MONTE CARLO AND NUMERICAL METHODS TO SOLVE
THE MA(q) TIME SERIES MODEL

Abstract. In this paper we will solve the nonlinear system of equations in the parameters
of the MA(q) time series model by Monte Carlo methods and by numerical methods.
When we identify the variance and the inter-covariances of time series, we obtain,
dividing by variance, a quadratic nonlinear system of equation that does not contain the
variance of wihite noise. We use only the autocorrelation function.
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1. Introduction

Before estimating coefficients of stationary time series model, we check
tirst if the given time series is stationary. We use for it the Dickey-Fuller
unit root test [2]. If the time series is not stationary, we stationarize it
[1,5,7] by some methods, as differentiating method, moving average
method, or by exponential smooth method.

After stationarization, we identify the coefficients of stationary
time series, using the Yule-Walker algorithm for the AR(p) time series,
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the innovations' algorithm for the MA(g) time series and the Hannan-
Rissanen algorithm for the ARMA(p,q) time series [1,7].

Numerical methods to solve non-linear systems of equations are
presented in [6]. Among these methods, we mention the contraction
method and the Newton — Raphson method.

Solving a nonlinear system of equations and other mathematical
problems by the Monte Carlo methods are presented in [8].

The idea of the innovations' algorithm is to consider first the time
series to be white noise, next MA(1), MA(2), ..., and finally MA(q). At
each step we compute first the variance of the white noise, and the parameter
0i decreasing on i from maximum possible value to one, as follows.

At the initial step the time series is considered white noise, with the

variance of white noise equal to the variance of time series O'g =7, (0).

At step m, when the time series is MA(m) , we compute

k-1
yz(m_k)_ Z em—j,m .ek—]',k O-J2
Ot = =
e o? : M
m—1
0-1121 = 7m(0)_ Z eri—j,m 'O-Jz'
0

where 7, (0) is the variance of the time series, and 7, (j) is the

autocovariance of order j. We notice that at step m the order of
computation is Omm, Om-1m, ..., O1.m, and finally 0',31.

The solution of the model is
q
X, =a; + Zei,q'at—i/ ()
i=0

. . ) ) . 2
where a: is a white noise with the variance o,

The optimization problems on a given domain can be solved by
the Monte Carlo methods if we know to simulate an uniform random
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variable on the given domain [8]. We simulate a big nuber of variables
on the domain, and for each simulated value we compute the value of
the function to be optimized. The solution is the generated value for
which the function is minimum/ maximum. From here arises the ideea
of solving nonlinear system of equations: we minimize the sum of
squares of the differences between the left sides and right sides.

2. Methodology

As in the innovations' algorithm, we consider

q
X, =a;,+2.6-a, ;. 3)
i=0
Denoting by vy« the intercovariance of order k of the time series X

(hence vyo is the variance) and by 07 the variance of a., we obtain

q
Y0 =0'2(1+ 2912]

i=l1

4k . 4)
Yk :0'2[6% + 2.6, '9k+ij
i=1

Dividing by yo we obtain first

q—k
O + 2.6, -6,
i=1

q
1+ 20,2

i=l1

:pk’k:Lq/ (5)

where o« is the autocorrelation function. Finally, we obtain
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q- q
O + Zei'ekﬂ':pk(l"' zeﬁ],kzl,q. 5
i-1 i=1

For the last equation in the above formula, when k=q the sum in
the left side vanishes, and the equation becomes

q-1 ) 2
§9i+ T +1——2:O. (6)

In order to have real solution for the last equation we must have

1
Py < 5 , which is a reasonable condition. We notice that in this case the last

equation is the sphere with center O,...,O,L and radius r = % -1.
2pq 4pq

For the Monte Carlo methods we simulate for g=1 a big number of
values of 0, say 10000 in (—1,1) and we choose 0 such that we obtain the

minimum of
06— ,0(92 +1), )
where p = p; and 8 =46,. In fact, because 0 and ¢ have the same sign,

we simulate &€ (0,1) for >0, respectively e (~1,0) in the contrary

case. In order to have a solution in (~1,1) we must have first

A=1-4p*>0, (8)
1 T
hence | p| < 5 The root with minus is in this case

_1-VA_ 4p®  2p o
20 2p(l+A) 1+4/A°

0
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We notice that, because the product of roots is, according Viete,
one, the other root (with plus) is greater in absolute value than one.
If g>1, consider the parametrization

q-1
6, =r- []cost;
=1
i i
O =r-sint, ;- [[cost;, 1<k<gq, (10)
i=1
1 .
6, =——+r-sing
2p,

where for 1<i<g we have ¢, € {—Z,z} ,and 1, € [0,27]. Therefore
2 2

we simulate sets (tl ,...,tq_l) uniform in the corresponding intervals, and

next we compute Ox and the differences between left and right sides for
the other equations. This is the parametrisation of the sphere of
dimension g. For g=3 we have the well known sphere. In this case we
simulate for each point a pair (¢;,z, ). We notice that, for having at least
one index such that 1<i < ¢ as above, we must have q>2. In the case q=2
we obtain the circle with the center and radius computed above for (6).
For g=1 we simulate 10000 sets of values (tl ,...,tq_l) - 10000 numbers in

[0,27[] in the case of circle (q=2). For each simulated set, we compute

according the above parametrization the carthesian coordinates (91 yeees Hq )

We compute for each such point on the sphere the sum of squares of
differences between left sides and right sides in (5'), except the last

equation, used for simulation. We choose the parameters (91 ,...,Gq) such

that the mentioned sum of squares is minimum. The sum of squares, S,
is a random variable having the cumulative distribution function F. The
error for a minimization problem in the general case, and for the
minimum sum of squares in our case is given by

e=F"(S). (11)
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Next proposition presents the cumulative distribution function F
from (11), for g=1.
Proposition 1.
1
Suppose that | p| < 5 in order to have a solution 8€ (0,1) in (7).

For q=1, we simulate the values 6 (0,1) if p=p; >0 and fe (-1,0)

in the contrary case. We compute the difference dif =6 — p(92 + 1). The
cumulative distribution function in a>0 is

F(a)=(6,-6)",
where n is the number of simulated ©, and O: are such that dif = +J/a .

For numerical methods, we consider 9(0) =0.5 as initial solution. We
solve the equation

pO* —0+p=0 (12)

by the tangent method (Newton Method). Of course, this equation can
be solved analyticaly, obtaining the solution

2
_lxyi-4p? 19

12 = 2p

Because, according the relations of Viete, we have the product of
roots equal to one, we choose the root in absolute value less than one.

We notice that from A:1—4,02 >0 we obtain also p; =p less in

absolute value than 0.5 as in the general case.
For the contraction method, we compute successively

9(k+1) = p((g(k))z +1) ) (12))
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In the case g>1 we consider for the initial solution 6’1(0) as the

solution of (13) , and Qi(o) =0 for the indexes i =2,q .

For the Newton-Raphson method, we obtain the Jacobean matrix |
and the right sides fx. For the matrix | we have

and (13)

i

_ 1-2p6,if 2i>q
- 20.0.+0,, otherwise’

206, if g-i<j<i
0,.,—2p6;if j<min(i,q—i) (13")
Y6 +6,,-2p6,if i< j<q-i

0, . —2p0; otherwise

For the values of fx we have, according (4")
q q-i
[i=6,—p; (1 + Zﬁlzj +20,0,.. (137)
= j=1

Proposition 2.
The nonlinear system (4") can be solved by the Newton-Raphson method
with any initial solution interior to the spheres having the centers and

radius given above, for q =2,q,,,, , with zeroes for components 6., i > q .

For the contraction method we consider 8" = (12(0),...,950)) in the interior

of the sphere used for simulation, and at each step
q 2 q-k
o = p, (”2(95")) j— Y 6" -6, forl<k<gq
i=1 i=1

q 2 (14)
6, =p, (1 +2(6") j
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Proposition 3.
Denote by p =max .,

p,-|. If p<3, the nonlinear system (5’) can be

solved by the contraction method with any initial solution interior to the

spheres having the centers and radius given above, for q=2,q.,,,. , with

zeroes for components 6;, i>q .

The formula (14) is the Jacobi contraction. The Gauss-Seidel contraction is

, Where (14"
G mlik) | p(n)
—;9, 6.0, forl<k<g
8" = p (1+§(9.(”*‘>)2]+ p.(67)
q q =\Yi q\"a
n+lif j<k
m( k)= . 14”
(k) {n sk (147)

For the numerical methods used in this paper, namely the
Newton-Raphson method and the contraction method, we have to start
with an initial solution 6o. We consider two approaches. First one (the
above presented approach) consists in using an initial solution 0o for
given g without tacking into account the solutions for less values of 4.
The other approach uses for g >2 the initial solution

(Hl,q,l,... 0 O), where (15)

sYq-1,q-1°
(6141026, 141) (15")

is the solution obtained for g—1.
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As error, for the above methods we consider in the Newton-Raphson
case the absolute value of f (x), since we know that, theoretically, f(x)=0.
In the contraction method case we consider as error the Euclidean distance
between the last two estimations of the vector 0.

After we have estimated by any method the coefficients 0 for a
given MA(q) time series, we estimate the variance, according (4): we divide
the variance of time series, yo, by the sum between parentheses.

3. Application

Example 1.
Consider the Consumer Price Index (CPI) in the period January 2010 —
December 2018, monthly data (108 values) in Romania [ipc].

If we apply the Dickey-Fuller test [2] the value of ® varies from -0.045016
(non significant) for the model 3, -0.030751 for the model 2, and -0.00212
for the model 1 (last two vales significant). For the first difference, the
maximum Student statistics is -7.356323 for the model 1, which is
significant 1%. Therefore, the time series is /(1) .

In the case q=1 we obtain by the analytical method (second degree
equation) 6, =-0.2340310762 and o, =0.3243509072. By the Monte
Carlo method, after 10000 simulations, we obtain 6, =—0.2340464492
and o, =0.3243486945 .

For numerical methods we consider the threshold of the error £ =107,
because a real number in simple precision on computer has eight digits.
By the tangent method, we obtain after 3 iterations 8 =-0.2340310759
and o, =0.3243509072. By the contraction method, we obtain after 9
iterations 6 =-0.2330310768 and o =0.3243509071.

In Table 1 we present for the first difference the MA(q) coefficients

obtained using the innovations' algoritm, the Monte Carlo methods (10000
simulations), and the contraction method, for ¢=1,5. For the numerical

methods we consider the threshold for the errors £ =10". We mention
on the last row for each numerical method and g the number of



76 DANIEL CIUIU

iterations. We consider in this case the initial solution for numericai
methods the first approch: we do not take into account the solutions for
previous values of 4.

For the second approach, the results are presented in Table 2. The
number of iterations for each g>2 means the number of iterations

starting with the final solution for g—1 as initial solution.

MA(q) coefficients for AXt, g =25

Table 1

Innovations Newton- Contractions’ method Monte Carlo
” algorithm Raphson Jacobi Gauss-Seidel methods
—0.2000851363 —0.2000851408 —0.2000851408
—0.2003501803
—0.19098 —0.1958517615 —0.1958517628 —0.1958517628
—0.1958725144
—-0.18161 3iterations 6 iterations 6 iterations
—0.1904482236 —0.1904482276 —0.1904482282
—0.1924663623
—-0.19039 —0.1809261397 —0.1809261397 —0.1809261398
—0.1817797451
—0.17479 —0.0747472561 —0.0747472559 -0.0747472556
—0.0748233366
—-0.06956 4 iterations 9iterations 9 iterations
—0.190657763 —0.1906577621 —0.1906577623
—-0.19031 —0.1724122593 —0.1724122594 —0.1724122593 —-0.19031
-0.17199 -0.0629667196 —0.0629667196 -0.0629667196 -0.17199
-0.05979 -0.0615089327 —0.0615089329 -0.0615089327 —-0.05979
—0.05728 4 iterations 9 iterations 10 iterations —0.05728
—0.1902561798 —0.1902561799 —0.1902561792
—0.1981159039
—0.19021 —0.1723723119 —0.1723723118 —0.1723723119
—0.1703646239
-0.17195 —0.0586709948 —0.0586709948 —0.0586709948
—0.0757286328
—-0.05848 —0.0554825038 —0.0554825038 —0.0554825038
—0.0436678251
—-0.05339 —0.0315553431 —0.0315553431 —0.0315553431
—0.0305838236
-0.0294 Siterations 10 iterations 10 iterations
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Table 2

The results of numerical methods for MA(g) coefficients if we use

the previous solutions as initial ones

Newton-Raphson

Contractions’ method

method Jacobi Gauss-Seidel

—0.2000851363 —0.2000851408 —0.2000851408
—0.195851765 —0.1958517628 —0.1958517628

3 iterations 6 iterations 6 iterations
—0.1904482293 —0.190448226 —0.1904482278
—0.1809261398 —0.1809261399 —0.1809261398
—0.074747256 —0.0747472562 —0.074747256

Siterations 8 iterations 9 iterations

—0.1906577642
—0.1724122593
—0.0629667195
—0.0615089328

Siterations

-0.1906577622
—0.1724122594
—0.0629667196
—-0.0615089328

9 iterations

—-0.1906577629
—0.1724122593
—0.0629667196
—-0.0615089327

9 iterations

—0.1902561794
—0.1723723119
—0.0586709948
—0.0554825038
—0.0315553431

Siterations

—0.1902561796
—0.1723723119
—0.0586709948
—0.0554825038
—0.0315553431

10 iterations

—0.1902561801
—0.1723723119
—0.0586709948
—0.0554825038
—0.0315553431

9iterations

The variances of the white noise is for the above methods are
presented in Table 3. For the numerical methods if we take into account
the previous solutions (corresponding to Table 2) ar identical in the
Newton-Raphson case, the last digit 3 becomes 5 for qg=3 and the last
digits 79 become 80 for g=5 in the Jacobi contraction case, and last digit 2
becomes 3 for g=3 and the last digits 80 become 79 for g=5 in the Gauss-
Seidel contraction case.

We notice that for the contraction method we can have more

iterations for small ¢ in the Jacobi case. But for higher values of g the
Gauss-Seidel contraction makes an serious improvement to the Jacobi
contraction. In Table 4 we present the numbers of iterations if we use/
we do not use the previous values, for g,, =15 and all three numeric
methods. In this table, Yes means we take into account the previous
results (for previous values of 4), and No means we do not.
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In Table 5 we present the last errors in the cases of the two
numerical methods and the two cases (using/ no using the previous
values). nrit represents the no. of iterations such that the error becomes
less than 10°°.

We mention that in the case q=1 we obtain the previous error
3.257-107 with the tangent method and 5.383-10™ with the contraction
method. The last errors are 2.931-107", respectively 5.591-107.

Table 3

The variance of the white noise for ¢ =15 in the cases of inovations’ algorithm,
and our three numerical methods and our Monte Carlo methods

Method q=1 q=2 q=3 q=4 q=5
Innovations” | o, 20751 | 0315249914 | 03143827599 | 03137850941 | 03138204017
algorithm
Newton- | 1 13500072 | 03172461365 | 03183680058 | 03185955435 | 03187138367
Raphson
Jacobi
: 03243509071 | 0.3172462245 | 0.3183680873 | 03185956129 | 0.3187139079
contractions’
Gauss-Seidel | ) 13500071 | 03172462245 | 03183680872 | 03185956128 | 0.318713908
contractions
Monte Carlo | 03243486945 | 03172126144 | 0.3180443697 | 0.315591096 | 03177001777
Table 4
The number of iterations for ¢mx =15 and ¢=6,15
if we take/ we do not take into account previous solutions
Y
Method\ q Ifs/ 6 |718 910 |11 |12]13]|14]15
Newton- Yes 6 7 6 7 7 8 8 8 9 10
Raphson No 5 6 | 6 |5 6 6 6 6 6 8
Jacobi Yes 14 | 20 | 19 | 21 26 27 34 36 33 49
contractions’ No 14 | 21 | 22 | 24 28 31 37 41 40 54
Gauss-Seidel Yes 10 | 12 | 12 | 12 14 14 15 15 15 20
contractions’ No 10 | 12 | 12 | 13 15 15 16 17 16 21
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Table 5
The last errors in the case of using/ not using the previous solutions
for the numerical methods, 4=2.5
Method \:Z/ N::itll q=2 q=3 q=4 q=5
No nrit-1 8.106*105 | 1.513*10° | 9.793*108 4.787*107
Newton-Raphson nrit 4.789%10° | 6.738*10° | 5.923*1010 4.453*1010
Yes nrit-1 | 8.106*10° | 4.75*10° 3.529*107 1.236*107
nrit 4.789%10° | 1.991*10° | 1.935*10° 5.729*1013
No nrit-1 7.138*107 | 1.764*108 1.11*107 4.211*10®
Jacobi nrit 3.369*107 | 3.004*10° | 9.542*10° 5.659*10*
contractions’ Yes nrit-1 | 7.138%107 | 1.228%107 | 5.358*108 1.198*10%
nrit 3.369*107 | 6.634*10° 5.08*10 1.902*10°
No nrit-1 7.138*107 | 7.494*10% | 1.175*108 2.069%108
Gauss-Seidel nrit 3.369*10° | 7.94*10° 1.152*10° 2.072*10°
contractions’ Yos nrit-1 7.138*107 | 3.436*108 | 5.775*108 7.736*108
nrit 3.369*10° | 3.817*10° 5.66*10° 7.761*10°

4. Conclusions

In [3] a long-term time series model for backbone trafic is presented. The
used model is SARIMA(p,d ,q)X(P,D,Q)S. Portmanteau tests for

residuals are used to choose between ARMA models.

In [4] there are presented Bayesian simulation techniques for time
series, namely the Gibbs algorithm. The simple vs. multi-state sampling
are compared in the mentioned article.

In our paper, opposite the innovations' algorithm, where we
estimate at each iteration k first Ok, and next Owi,..., 01 (and finally the
variance), in the presented two contraction methods we estimate first 01,
and next 0,..., Ox. An improvement is for all three methods the
elimination of the variance, according (5’). Only after we have estimated
the values 0s,..., 0 we estimate the variance using (4).

Because the error is 107, the first seven digits for the estimated
values of 0i are the same in each case of gmax and ¢ for all three numerical
methods. Comparing the two approaches, we have differences only for
q > 2. For the estimated values of 6, we have the maximum difference
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in absolute value 4.3-107 for q=3,_5 and 8.4-107 for q:& in the
case of Newton-Raphson method, 1.6-107 for q=3,_5 and 3.3-107 for

g=6,15 in the case of Jacobi contraction method, and 9-10™" for

q=3,5 and 2.4-107° for q =& in the case of Gauss-Seidel contraction
method. The absolute values of differences for the variances of white

noise are for g=3,5 in the three cases 5-10", 2107, respectively

107, Similarly, we obtain for g=6,15 the maximum differences in

absolute values 910", 910", respectively 5-107".
Comparing the two contraction methods we obtain the above

differences in absolute values for 0 being 2.2-10” for q:3,_5 and

5107 for q=6,15. For the variance of the white noise, the absolute

values of differences are 3-107'" for ¢ =3,_5 and 1.1-107 for q=&.

Comparing all three numeric methods we obtain the above

differences in absolute values for 6 being 7.6-10” for ¢=3,5 and

1.07-10°® for q=6,15. For the variance of the white noise, the absolute

values of differences are 9-10™"° for q=3,5 and 1.5-107 for q=6,15.
The number of iterations in the contraction case is, as we see in
Table 4, greater if we do not take into account the previous results. In the
case of Jacobi contraction, we have three additional iterations if
qge {8,9,12} , four additional iterations if g =11, five additional iterations
for g=13 or g =15, and even seven additional iterations if g=14.
Between the two contraction methods, we have generally the
lowest values for the number of iterations in the Gauss-Seidel case, as
expected. This because the estimated values of O are used immediately
in this case, while in the Jacobi case we use the estimated value 6: with
i <q only after we estimate Oq at a given iteration. Other case with low
numbers of iterations, lower even the Gauss-Seidel case is the case of
Newton-Raphson method. In this case the explanation comes from the
other definition of error: the absolute value of f (@), which is decreased

by the factors p, <1.
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