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Abstract. Stance detection is the task of determining whether the information conveyed in a text
is against, neutral, or in favor of a particular target. Since there is a plethora of targets upon which
one can adopt a position, one common challenge of the stance detection task is the scarcity of
annotations. Conversely, the emphasis on data quantity frequently entails a compromise in
terms of the quality of the data. To address both challenges, we propose two data augmentation
techniques that leverage training dynamics — the model behavior on individual instances
during training — to identify and combine data instances with properties that differ, triggering,
for example, the improvement of the generalization capabilities of the model or the
enhancement of its optimization process. The first data augmentation method uses training
dynamics to generate additional virtual samples during model training by interpolating
existing annotated samples with characteristics that differ. The second data annotation
approach is defined as a conditional masked language modeling task that generates additional
samples by predicting the masked words of the input sentence, conditioned not only on its
context but also on an auxiliary sentence sampled based on its characteristics. We empirically
validated that fine-tuning a pre-trained language model on a subset of the training data, such
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that the instances that harm the training process are excluded, achieves better performance as
compared to the same model fine-tuned on the entire training dataset. Moreover, in most cases,
the performance of the existing augmentation approaches was also improved by using data
with properties that differ during the annotation process, as opposed to random sampling.

Keywords: stance detection, data cartography, training dynamics, data augmentation

1. Introduction

Stance detection aims to automatically determine the standpoint taken
by the author of a text towards a target of interest (Mohammad et al. 2017)
and plays an important role in understanding how information is conveyed
in everyday life. Stance detection has widespread applications, ranging
from measuring public opinion towards social or political issues to
identifying if the author of a text promotes a false idea or contradicts it
as an integrated part of fake news detection systems. Most real-life
stance detection systems are usually required to accommodate a wide
range of targets, thus a common challenge of this task is represented by
the scarcity of annotations. On the other hand, shifting the focus to the
quantity of the data often comes with a cost regarding its quality.

To address both challenges, we first employ a technique called
Data Cartography to characterize each instance of a dataset. Using this
characterization, we remove the instances that harm the training process
and then proceed to expand the dataset by using the different attributes
of the remaining instances to intelligently augment the data.

The Data Cartography technique was first proposed in (Swayamdipta
et al. 2020) and aims to characterize a dataset by analyzing the behavior
of a model during training on each data instance (training dynamics).
Specifically, it measures the variability and confidence of the model in
the true class across multiple epochs, identifying three types of instances —
easy-to-learn, ambiguous, and hard-to-learn — each having a different impact
on the training process. The easy-to-learn instances are consistently labeled
correctly by the model, having low variability and high confidence. On the
opposing end, the hard-to-learn examples are defined by low confidence
and variability, being often mislabeled by the classifier. Ambiguous
examples exhibit high variability, as the model struggles to learn them.



Data Cartography Based Augmentation Techniques for Stance Detection 95

Swayamdipta et al. (2020) tested the approach on several NLP tasks —
natural language inference, question answering and commonsense reasoning —
and found that ambiguous examples promote out-of-distribution generalization,
the easy-to-learn examples contribute to model optimization, while the
hard-to-learn instances often correspond to annotation errors. Inspired by
these results, Park and Caragea (2022) leveraged the Data Cartography technique
to improve the MixUp augmentation method (Zhang et al. 2018) which
creates additional virtual examples during training by linearly interpolating
the hidden representation of two randomly sampled data instances. In
contrast, the method proposed by Park and Caragea (2022), called TDMixUp,
interpolates examples with different data characteristics, specifically
from the easy-to-learn and ambiguous categories, improving the results
of the randomized MixUp strategy on six datasets corresponding to natural
language inference, paraphrase detection and commonsense reasoning
NLP tasks. Motivated by these results, we apply the TDMixUp method
on stance detection, by leveraging training dynamics to characterize
each data sample based on its contribution to the learning process. We
equally divide the dataset into easy-to-learn, ambiguous, and hard-to-
learn instances and then fine-tune a pre-trained language model on two
of these sets (either easy-to-learn and ambiguous, or hard-to-learn and
ambiguous), while also generating additional samples through interpolation
between the two sets. In contrast with the approach proposed by Park and
Caragea (2022), we do not remove the hard-to-learn examples, hypothesizing
that, depending on the dataset, they might actually promote learning and
out-of-distribution generalization.

Furthermore, we apply the Data Cartography technique on another
augmentation method, called ASDA (Li and Caragea 2021), that was
successfully employed in improving the stance detection task. The
ASDA method is defined as a conditional masked language modeling
(MLM) task that generates additional samples by predicting the masked
words of the input sentence. Unlike other similar methods that condition
the augmentation of a sentence only on its context and label (Wu et al.
2019), ASDA also uses an auxiliary sentence that provides additional
context. This context encodes information regarding both the stance and
the target of the input sentence, as well as an additional example sampled
from the dataset that has the same target and stance. The results presented
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by Li and Caragea (2021) show that this approach leads to more diversified,
target and stance-aware augmented sentences, compared to previous
augmentation methods. We hypothesize that we can further improve the
diversity of the augmented sentences, as well as the predictive performance
of a model, by sampling the auxiliary sentence from a subset of the data
that was characterized differently by the training dynamics compared to
the input sentence.

2. Related Work

The topic of stance detection has been extensively studied in recent
years, both as an independent task (Augenstein et al. 2016, Allaway and
McKeown 2020, Glandt et al. 2021) and as part of larger systems, such as
rumor veracity evaluation (Poddar et al. 2018, Ma et al. 2018) or fake
news detection (Bhatt et al. 2018, Borges et al. 2019). Most stance detection
approaches cover the in-target setup (Li, Zhao, and Caragea 2021, Glandt
et al. 2021), where the targets present during the test stage have also
been seen during training. Some studies, however, focus on cross-target
stance detection (Xu et al. 2018, Zhang et al. 2020), where the aim is to
generalize classifiers across targets, or zero-shot stance detection (Allaway
and McKeown 2020, Zhang et al. 2023), where the test targets have not
been seen during training. As the scarcity of annotations is a prevalent
challenge in stance detection, many studies have focused on diminishing
this issue through data augmentation (Li and Caragea 2021, Li and Yuan
2022, Zhang et al. 2023), multi-dataset learning (Li, Zhao, and Caragea
2021), or creating larger, more varied datasets (Zhang et al. 2023).

In this study, we explore two methods of improving the performance
of both in-target and zero-shot stance detection through data augmentation.
The first method is inspired by TDMixUp (Park and Caragea 2022), an
augmentation method that has been successfully employed on several
NLP tasks — natural language inference, paraphrase detection and
commonsense reasoning. TDMixUp improves upon the MixUp strategy
(Zhang et al. 2018), which extends the training distribution by linearly
interpolating randomly selected input instances and their associated
labels. Instead of randomized linear interpolation, TDMixUp employs
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the Data Cartography technique (Swayamdipta et al. 2020) to characterize
each data instance and then combines instances with characteristics that
are different to create more diverse new data samples.

The second augmentation approach extends the ASDA strategy
proposed in (Li and Caragea 2021), by using Data Cartography to generate
more informative examples. ASDA is formulated as a conditional masked
language modeling task, where the masked words are conditioned on
the context in which they appear, as well as on an auxiliary sentence.
The latter contains the target and label information of the data instance
and an additional example, randomly extracted from the same dataset,
but having the same target and label. Similar to TDMixUp, our approach
replaces the randomized selection of an additional example with a more
informed selection process, that takes into consideration the characteristics
of both the initial and additional example.

3. Data Cartography as a tool for data augmentation

The core of both data augmentation methods proposed in this paper is
represented by the Data Cartography technique, first introduced in
(Swayamdipta et al. 2020). The goal of this technique is to characterize a
dataset, by analyzing the behavior of a model on individual examples
during training — Training Dynamics. Similar to the original approach
(Swayamdipta et al. 2020), we employ confidence and variability as the
training dynamics used to characterize each data instance (Xi.¥i) over E
training epochs. The confidence measure (Mi) captures how confident in
the true label the learner is, for a given example, and is defined as the
mean model probability of the true label across epochs. The variability
(9i) measures the spread of the model probability of the true label across
epochs and is defined using the standard deviation:
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The values of these statistics per sample are then used to map each
data instance to one of the following three categories — easy-to-learn,
ambiguous, and hard-to-learn — by equally splitting the dataset. The
easy-to-learn category is characterized by high confidence and low
variability and corresponds to those examples that are consistently labeled
correctly by the model, while the hard-to-learn examples have low
confidence and low variability, being usually mislabeled by the model.
The ambiguous examples are the most challenging for the model, being
represented by high variability. Furthermore, the confidence and
variability metrics of each data instance can be used to construct Data
Maps that help visualize the dataset with its three regions (easy-to-learn,
ambiguous, hard-to-learn). Such examples can be seen in the Annex (

Figure 3 to

Figure 8).

4. Improving Stance Detection using Data Augmentation

We propose two augmentation methods for stance detection that make
use of training dynamics to intelligently extract the data instances that
will be used for augmentation. The first approach is similar to the
TDMixUp (Park and Caragea 2022) proposal and implies interpolating
examples from distinct regions identified using training dynamics. The
second method extends ASDA (Li and Caragea 2021) by using training
dynamics to create more diverse auxiliary sentences, that contain data
from a different region than the sentence that is augmented.

4.1. TDMixUp

TDMixUp uses the same methodology of constructing virtual examples
during training as in the original MixUp paper (Zhang et al. 2018), which
extends the training distribution by including the prior knowledge that linear
interpolations of embeddings should lead to linear interpolations of the
associated labels:
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where X% are raw input vectors, Yi-Yi are one-hot label encodings, and

A €[0.1] is sampled from a Betala, @ distribution and controls the strength

of the interpolation through the hyper-parameter @€ (0,%). The MixUp

approach aims to encourage a linear behavior of the model in between
training examples, leading to stronger, more robust predictions.

In the original paper (Zhang et al. 2018), the two instances that are
interpolated at some point are sampled randomly from the dataset.
However, similar to the approach in (Park and Caragea 2022), we propose a
method that interpolates examples from different regions, as identified using
the Data Cartography technique. Specifically, using the MixUp strategy, we
interpolate between the easy-to-learn and ambiguous sets, as well as between
the hard-to-learn and ambiguous sets. The same model used to compute the
training dynamics is retrained from scratch on the selected regions and on
the interpolated samples generated during training using the MixUp method.

4.2. TDASDA

Inspired by the results obtained with the Auxiliary Sentence based Data
Augmentation (ASDA) method (Li and Caragea 2021), we propose an
adaptation of ASDA that makes use of the training dynamics when creating
the auxiliary sentence. We refer to this proposed method as TDASDA
(Training Dynamics ASDA). ASDA is an augmentation approach defined as
a conditional masked language modeling task, which generates additional
samples by predicting the masked words of the input sentences. As the
model aims to generate new samples that are consistent with both the label
and the target, an auxiliary sentence is concatenated to the example containing
the masked words, in order to provide additional context. This auxiliary
sentence has the same format as described in the original paper: “The authors
of the following tweets are both [Label] [Target]. The first tweet is:
[Additional Example]. The second tweet is:” (Li and Caragea 2021).
However, instead of randomly sampling an additional example from the
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dataset, TDASDA further conditions the model to choose an example
with characteristics that are different (derived from training dynamics)
compared to those of the input sentence, but with the same stance and
target. We hypothesize that this approach will increase the diversity of
the augmented sentences generated by the model, by including samples
with characteristics that differ in the context of the model.

5. Testing Setup
5.1. Datasets

Three stance detection datasets were used to test the performance of the
approaches introduced in this paper: COVIDLies (Hossain et al. 2020),
VAST (Allaway and McKeown 2020), and SemEval 2016 (Krejzl and
Steinberger 2016).

The COVIDLies dataset was intended for misinformation detection and
contains 62 claims extracted from a Wikipedia article about misconceptions
related to the COVID-19 pandemic. The dataset contains 6591 tweets from
March and April 2020, that have been mapped to misconceptions using
BERTScore (Zhang et al. 2020). However, many of the misconceptions in
COVIDLies have labeled examples only for the neutral class. Thus, we
decided to construct an additional dataset, called Reduced COVIDLies
that contains only those targets that have examples from at least two classes.
The Reduced COVIDLies dataset contains 2110 tweets and 17 misconceptions.

VAried Stance Topics (VAST) is a large dataset created for zero-shot
and few-shot stance detection. The dataset contains 18545 comments collected
from The New York Times 'Room for Debate' section and 5634 topics,
which are extracted from the debate topic or proposed by annotators. Some
of these topics are mostly or only present in the testing and validation
datasets to simulate a few-shot or zero-shot scenario. There are three
validation and test datasets, one for zero-shot detection (the dataset
contains completely new topics compared to the training data), one for
few-shot (the dataset contains examples for the topics that have little
representation in the training data), and a combined dataset.
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SemEval 2016 is a stance detection dataset created for a shared task
in the SemEval 2016 competition. The dataset consists of 4870 English
tweets and 5 targets ("Atheism", "Feminist Movement", "Climate Change
is a Real Concern", "Legalization of Abortion" and "Hillary Clinton"). The
tweet-target pairs were manually annotated as either support, against,
or neither. The latter label refers to both neutral examples and examples
that contain no cue that can reveal the stance towards the given target.

5.2. Baselines and Parameter Tunning

To assess the performance of the two data augmentation methods, we
compare them with the results of a fine-tuned language model on 100%
of the training data, as well as on subsets of data having characteristics
that differ (employing the Data Cartography method), as presented in
Table 2 (see the Annex). The data augmentation methods are also
benchmarked against their alternatives that use random sampling instead
of training dynamics to generate additional data. BERT (Devlin et al. 2019)
was used as the base language model for the VAST dataset, while
Covid-Twitter-BERT (Miiller et al. 2020), a BERT model pre-trained on a
corpus of Tweets about COVID-19, was employed for the COVIDLies
and SemEval 2016 datasets.

For the Data Cartography method and TDMixUp, we fine-tune the
base models to predict the stance ("neutral”, "in-favor", or "against") by
appending a fully-connected layer to the hidden representation of the
[CLS] token. An overview of the general model architecture used for these
methods is presented in

Figure 1 (see the Annex). The model is fine-tuned for 4 epochs,
using a batch size of 32, and the Adam optimizer with a learning rate of
2e-5 and no weight decay. The maximum sequence length is 256 for BERT
and 128 for Covid-Twitter-BERT. In order for the model to learn to predict
the stance based on both the input sentence and the target, the input
sequence will contain both pieces of information, separated by the [SEP]
token. Regarding TDMixUp, the hyper-parameter @ from the Beta
distribution, controlling the strength of the interpolation, is set to 0.4.
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For the TDASDA approach we used the same base models as before
on top of which we stacked a head for masked language modeling. A
representation of the general model architecture used for this method is
presented in

Figure 2 (see the Annex). We fine-tuned these models for 10
epochs, using a batch size of 16, the Adam optimizer with a learning rate of
le-4, and the Sparse Categorical Cross Entropy loss function. The maximum
sequence length is set to 400 for BERT and 256 for Covid-Twitter-BERT.
The percentage of masked words in the input example is set to 15%,
matching the percentage of tokens that were masked while training the
base BERT model (Devlin et al. 2019). The labels provided to the model
correspond to the tokens of the original sentence before any masking
was done.

The results for all methods are averaged across 5 runs with random
restarts. We evaluated our approaches using the macro averaged Fl1-score,
in order to make sure that each class is given equal importance.

6. Results

The core of all methods proposed in this study is represented by the
usage of training dynamics to characterize the instances in a dataset. To
assess the effect of the Data Cartography method on the three datasets,
we fine-tune a pre-trained language model on a subset of the initial
dataset, characterized using training dynamics. Table 2 (see the Annex)
describes all the subsets and their combinations that we used to test our
approaches. Table 3 (see the Annex) presents the overall macro averaged
Fl-score of the Data Cartography technique and its benchmarks. The
obtained results exhibit two main trends.

Firstly, we can see that the best results on VAST and SemEval are
obtained using the combination of the easy-to-learn, ambiguous, and
half of the hard-to-learn subsets. In order to better understand this result,
we can look at the distribution of the instances between the three regions,
represented in

Figure 3 to Figure 6 (see the Annex). In all these datasets, slightly
more data seems to be condensed in the upper part of the graph,
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suggesting that some of the examples that have been characterized as
hard-to-learn exhibit a behavior that is more characteristic of the ambiguous
or easy-to-learn instances, thus, instead of harming the training process, they
improve its generalization capabilities. This may explain why the combination
of ambiguous, easy-to-learn, and half of the hard-to-learn sets leads to
slightly better performance compared to the merger of the easy-to-learn and
ambiguous sets that has been used so far (Swayamdipta et al. 2020, Park
and Caragea 2022) and that represents the second best combination.
Secondly, by switching our attention to the results on Covid Lies,
we can observe that the hard-to-learn instances seem to play a bigger role
than before in aiding the learning process. Specifically, we see very good
results obtained using the ambiguous and hard-to-learn sets, significantly
better than those obtained by combining ambiguous with easy-to-learn
data. By looking at the data distribution on the three regions (Figure 7 and
Figure 8 of the Annex), we identify an isolated cluster of very easy-
to-learn instances that don't provide much information about the learning
process of the model. Given the uneven distribution, the instances that led
to these impressive results probably exhibit the behavior of easy-to-learn
and ambiguous examples, promoting generalization and model convergence.
We hypothesize that the patterns presented above will extend to
the data augmentation methods and present the results in. Some of the
results obtained using solely the Data Cartography technique were
included in the upper part of, to be used as benchmarks. We note that
we included only the results of the models fine-tuned on two subsets of
data with characteristics that differ, as the data augmentation methods
further implemented in this paper, namely TDMixUp (Park and Caragea
2022) and ASDA (Li and Caragea 2021), were introduced with reference
to combinations of two subsets only. However, we acknowledge the
potential benefits of extending these data augmentation methods to
combine three subsets of instances with characteristics that differ, given
the aforementioned results obtained with the Data Cartography technique
on all VAST and SemEval datasets (see Table 3 of the Annex). We leave
this area of investigation and possible improvement for future studies.
The middle part of shows the macro averaged F1-score of the TDMixUp
augmentation strategy, which interpolates examples from the ambiguous
and easy-to-learn sets, as well as from the ambiguous and hard-to-learn
pair. We also included the results of the randomized MixUp strategy.
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The lower part of shows the macro averaged F1-score of the TDASDA
augmentation strategy, which generated additional samples by predicting
the masked words of the input sentence. The prediction of the masked words
is conditioned on the context of the input sentence, its stance and target,
as well as an additional example from the dataset that exhibits different
characteristics compared to the input sentence. We tested the approach
by sampling data from the following pairs of subsets: (ambiguous,
easy-to-learn), and (ambiguous, hard-to-learn). We also show the results
of TDASDA on randomly sampled data.

Table 1
The macro averaged F1-score results on all datasets for TDASDA (lower),
TDMixUp (middle), and several Data Cartography benchmarks (upper)
Data Subset VAST VAST VAST SemEval ClLies CLies
Zero Few Red
100% train 0.6932 0.7116 0.6961 0.7375 0.7433 0.6261
66% train rand 0.6665 0.6978 0.6324 0.6357 0.6155 0.5506
amb + easy 0.7157 0.7194 0.6915 0.7229 0.7146 0.4975
amb + hard 0.6379 0.6600 0.6166 0.6884 0.7281 0.6391
TDMixUP:
Data Subset VAST VAST VAST SemEval ClLies CLies
Zero Few Red
33% +33% train | 0.6858 0.7001 0.6715 0.7190 0.6471 0.5758
amb + easy 0.7134 0.7257 0.6926 0.7223 0.6843 0.4923
amb + hard 0.6527 0.6671 0.6354 0.6442 0.6869 0.6164
TDASDA:
Data Subset VAST VAST VAST SemEval ClLies CLies
Zero Few Red
66% train 0.6900 0.7014 0.6692 0.7402 0.6578 0.5547
amb + easy 0.7143 0.7248 0.7073 0.7391 0.6730 0.4718
amb + hard 0.6780 0.6539 0.6177 0.6830 0.7032 0.6145

As hypothesized, by analyzing the results of TDMixUp and TDASDA,
we can also identify two patterns, depending on which combination of
instances gave better results.

Firstly, on all VAST datasets we can see that both TDMixUp and
TDASDA data augmentation strategies consistently improve upon the
results of the Data Cartography approach, when using the same input
data. Moreover, the TDMixUp strategy that interpolates ambiguous and
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easy-to-learn instances significantly outperforms the randomized MixUp
approach. Similarly, TDASDA on the ambiguous and easy-to-learn sets
leads to better performance, when compared to the randomized ASDA.
For the SemEval dataset, only the TDASDA approach led to better
results compared to the Data Cartography method, but TDASDA on the
ambiguous and easy-to-learn sets did not improve upon the randomized
approach. Conversely, TDMixUp applied on SemEval did not improve
the performance of Data Cartography, but TDMixUp on easy-to-learn
and ambiguous sets did improve the randomized MixUp strategy.
Secondly, on both Covid Lies datasets, the best results obtained
using either of the data augmentation techniques are achieved using the
combination of hard-to-learn and ambiguous instances. However, these
results do not improve upon the Data Cartography method. The only
improvement of the data augmentation strategies upon the Data
Cartography method for Covid Lies is achieved using randomized data.

7. Conclusions

We proposed two data augmentation techniques, TDMixUp and
TDASDA, that aim to improve the Stance Detection task by leveraging
training dynamics, namely the information extracted from the model
behavior during training on each individual instance. Firstly, we
characterized each example in the dataset using training dynamics — a
technique called Data Cartography — and identified three groups of instances:
easy-to-learn, ambiguous, and hard-to-learn. Then we hypothesized
that, when fine-tuning a pre-trained language model only on certain
groups, by removing instances that harm the training process, we may
improve the predictive performance of the model. We empirically validated
that the Data Cartography method achieves superior performance in
terms of the macro averaged F1-score, usually by using a combination of
easy-to-learn, ambiguous, and half of the hard-to-learn instances. On
some datasets, better results were obtained using ambiguous and hard-
to-learn examples, which can be explained by the unevenly distributed
data between the three regions, making the ambiguous and hard-to-
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learn examples behave more closely to easy-to-learn and ambiguous
data in these datasets.

Secondly, we validated the effect of the Data Cartography tool on
two data augmentation methods. For these approaches, we used the same
three groups of instances identified before. While TDMixUp interpolates
instances from two different groups to create additional virtual examples
during training, TDASDA is designed as a conditional masked language
modeling task that generates additional data by predicting the masked
words of an input sentence. The prediction of the masked words is conditioned
on an auxiliary sentence that encodes the stance and the target of the input
instance, as well as an additional example with characteristics that
differ, but which displays the same stance towards the same target. Both
augmentation approaches lead to similar conclusions: by combining
instances with characteristics that are different, TDMixUp and TDASDA
generally improve upon their random sampling alternatives.
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Annex
1. Datasets used for benchmarking
Table 2
Dataset splitting methodology
Dataset Description
train 100% the entire dataset
train 66% 66% of the dataset, randomly chosen
train 33% 33% of the dataset, randomly chosen
easy the 33% most easy-to-learn examples
amb the 33% most ambiguous examples
hard the 33% most hard-to-learn examples
amb + easy all dataset minus the 33% most hard-to-learn examples
amb + easy + 50% hard | all dataset minus the 16.5% most hard-to-learn examples
amb + hard all dataset minus the 33% most easy-to-learn examples
amb + 50% hard the 33% most ambiguous examples plus 16.5% least
hard-to-learn examples
2. Data Cartography results
Table 3
Macro averaged F1-score results on all datasets and their subsets
Data Subset vasT | VAST | VAST | g Eval | Clies | <1
Zero Few Red
100% train 0.6932 | 0.7116 | 0.6961 0.7375 0.7433 0.6261
33% train random 0.6802 | 0.6964 | 0.6388 0.6570 0.6368 0.6281
66% train random 0.6665 | 0.6978 | 0.6324 0.6357 0.6155 0.5506
easy 0.6980 | 0.6986 | 0.6525 0.7204 0.3207 0.3036
amb 0.6479 | 0.6878 | 0.6673 0.6585 0.6318 0.4394
hard 0.2585 | 0.2670 | 0.2658 0.4265 0.4511 0.5532
amb + easy 0.7157 | 0.7194 | 0.6915 0.7229 0.7146 0.4975
amb + easy +50% hard | 0.7211 | 0.7313 | 0.6936 0.7552 0.7068 0.4992
amb + hard 0.6379 | 0.6600 | 0.6166 0.6884 0.7281 0.6391
amb + 50% hard 0.7059 | 0.7045 | 0.6788 0.6994 0.6882 0.4609
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3. Models’ architectures

Stance + Target Additional Example
with masked words

Figure 2. Language model architecture for conditional masked language modeling
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4. Data Maps
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Figure 3. Data Map for the VAST Dataset, BERT model
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Figure 4. Data Map for the VAST Zero Shot Dataset, BERT model
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VAST Few Shot-BERT Data Map
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Figure 5. Data Map for the VAST Few Shot Dataset, BERT model

SemEval 2016-Covid Twitter BERT Data Map
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Figure 6. Data Map for the SemEval Dataset, Covid Twitter BERT model
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Covid Lies-Covid Twitter BERT Data Map
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Figure 7. Data Map for the Covid Lies Dataset, Covid Twitter BERT model

Reduced Covid Lies-Covid Twitter BERT Data Map
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Figure 8. Data Map for the Reduced Covid Lies Dataset, Covid Twitter BERT model





