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Abstract Cardiovascular diseases are considered as one of the most common causes of death worldwide. 
Well-beings of people in the risk groups are monitored by various state-of-the-art tools in 
clinics and home-care units. Phonocardiograph is one of the them which captures sounds 
coming from the heart and gives high-quality graphical records (i.e., Phonocardiogram, PCG) 
of them for examination of pathologies. PCG records have been studied and interpreted in order 
to localize heart sound segments and classify abnormalities for decades. Moreover, there have 
been competitions for heart sound classification and researchers have developed successful 
solutions based on signal processing and machine learning approaches. Main steps of those 
studies are grouped as preprocessing, segmentation, feature extraction and classification. In this 
study we present a survey of proposed methods and used datasets. The features used in the 
literature are listed as time, frequency and time-frequency domains. Performances of different 
studies are presented and compared. From this perspective, it is concluded that there is still 
room for automated heart sound analysis. Larger open access PCG databases are required for 
testing state-of-the-art machine learning methods.
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Introduction 

Heart, blood vessels and blood together form the 
cardiovascular system. Heart is located in the left of the 
middle chest surrounded with two lungs and diaphragm 
muscle. Blood vessels include veins (carrying blood from 
body to heart), arteries (carrying blood from heart to body) 
and capillaries (smallest vessels that enable material 
exchange between body cells and blood). Different sized 
vessels form a vascular network of approximately 96500 
kilometers (60000 miles) [1] in which blood is consistently 
transported to supply vital elements to body cells. During this 
circulation process, body cells receive oxygen, nutrients, 
hormones and get rid of carbon dioxide and cellular waste 
products. 

According to World Health Organization (WHO), 
diseases of cardiovascular system are the most prominent 
factors of death globally being the cause of an estimated 31% 
of all deaths worldwide [2]. In addition to having a high 
morbidity, they also deteriorate life quality of patients. Most 
common cardiovascular diseases are myocardial infarction, 
stroke, Kawasaki disease, high blood pressure (hypertension), 
high cholesterol, coronary artery disease, cardiomyopathy, 
rhythm disorders (arrhythmia) and heart structure related 
congenital defects. Hypertension, diabetes, obesity, smoking, 
use of alcohol, inadequate physical activity and family 
history of having CVDs are counted as risk factors. 
Controlling the risk factors and following a healthy lifestyle 
are very important for coping with CVDs.  

Heart is the core organ of the cardiovascular system 
pumping and propelling the blood through vessels. Under 
normal conditions, it usually beats from 60 to 100 times per 
minute to achieve this task. Depending on the condition of 
the individual, heart receives messages through hormones, 
sympathetic and parasympathetic nervous system. 
According to the needs indicated by those messages, the 
heart can pump less or more blood than usual. During rest or 
sleep heart rate decreases while during periods of physical 
exercise heart rate increase. 

Heart is made up of four chambers which are entitled 
according to their locational properties like left/right and 
upper/lower. The two upper chambers are called as atria and 
the two lower chambers are called as ventricles. A muscular 
wall (septum) divides the heart into left and right parts. In a 
healthy heart, blood of left side cannot be mixed with the 
blood of right side. The left atrium is separated from left 
ventricle by mitral valve and the right atrium is separated 
from the right ventricle by tricuspid valve. Those two valves 
are called as atrioventricular valves. Similarly, two valves 
separate ventricles from blood vessels that carry the leaving 
blood. Pulmonic valve is placed between right ventricle and 
pulmonary artery while aortic valve is located between left 
ventricle and aorta.  

Having a specific type of muscle kind (cardiac muscle) 
heart is under involuntary control. Functioning of the heart is 

rhythmic and regular but non-stationary. The period from 
one heart beat to another heart beat is called as cardiac cycle. 
Heart beats are controlled by a system of electrical signals 
generated in the heart. Sinoatrial node (SA, a small tissue in 
the wall of right atrium) is called as the pacemaker of the 
heart. The electrical signals generated by SA sets the rate of 
heartbeats and triggers the heart to contract in rhythm. 
Contraction of the heart starts from atria and then ventricles 
follow them. 

One complete cardiac cycle is divided into two phases: 
pumping phase (namely systole) and filling phase (namely 
diastole). In the systole phase, the ventricles contract in order 
to pump the blood through the vessels to the body. Backward 
blood flow into atria is prevented by atrioventricular valves. 
Those valves close creating the first heart sound (S1). When 
the contraction of the ventricles end, this time backward 
blood flow into ventricles is stopped by the pulmonic and 
aortic valves. Those valves close immediately creating the 
second heart sound (S2). Then the ventricles relax and they 
are refilled with blood coming from the atria. This phase is 
called as diastole during which the heart gets ready for the 
following heartbeat.  Generally, one cardiac cycle lasts 0.8 
seconds at a normal heart rate but some factors like gender 
and age can change cardiac cycle period smoothly [3]. 

Each heartbeat consists of characteristic electrical and 
mechanical events. Those events occur in accordance with 
each other during the cardiac cycle. This relation between 
those mechanical and electrical events is defined as the 
dynamics of the heartbeat. Basic concepts of this topic have 
been defined by Wiggers (1923), Lewis (1925) and their 
colleagues [4]. Changes at aortic pressure, heart chambers’ 
volume, arterial flow and heart sounds are some of the 
recurrent attributes of cardiac cycle. Carefully observing 
those events help clinicians to understand and diagnose 
various CVDs.  

Healthcare professionals use many modalities for 
recognizing CVDs such as Electrocardiography (ECG or 
EKG), Echocardiography (echo), Phonocardiography (PCG), 
Magnetic Resonance Imaging (MRI), Ballistocardiography 
(BCG), Impedance Cardiography (ICG) and etc. Those 
medical monitoring tools works with different kind of signals 
such as electrical, acoustic, seismic, optical and radio-
frequency [5]. Hospitals, clinics, treatment centers and 
home-care units have many medical devices and equipment. 
Thanks to advances in the technology of communication and 
information, today patients can access many forms of body 
sensors as well. With increasing access to monitoring 
devices, healthcare information about blood pressure, heart 
rhythm, heart rate variability, respiration rate and many other 
features can be followed regularly.  

Although there are plenty of alternatives, many 
clinicians’ first choice for examining circulatory and 
respiratory systems would be auscultation (i.e listening to the 
body sounds by using a stethoscope). Stethoscope was 
invented by Rene Laennec in 1816 but it is still a valid 
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method for diagnosis. Auscultation is cost-effective, simple, 
noninvasive, practical and fast therefore stethoscopes have 
been the very symbol of medical profession for two 
centuries. Being consisted of a diaphragm, two earpieces and 
rubber tubing, stethoscopes basically convert vibration 
signal into acoustic signal. 

Internal body sounds can be heard from lungs, abdomen, 
heart and major blood vessels. For cardiac examination, there 
are four main regions to put the diaphragm of the stethoscope 
from which the valves can be best heard. Those regions are 
aortic region (centered at the second right intercostal space), 
pulmonic region (in the second intercostal space along the 
left sternal border), tricuspid region (between the 3rd, 4th, 
5th, and 6th intercostal spaces at the left sternal border) and 
mitral region (near the apex of the heard between the 5th and 
6th intercostal spaces in the mid-clavicular line) [6]. 

Auscultation evidences can be interpreted successfully as 
long as clinicians have good listening skills and experience. 
When abnormal sounds are heard, they are graded on a  
6-point level scale (Levine scale) by physicians [7]. This 
process can be hard for intern doctors and inexperienced 
physicians. Moreover, same sounds can be subjectively 
categorized and graded by distinct listeners since human ear 
has physical limitations [8, 9]. Permanent records are not kept 
by traditional stethoscopes which makes consultation for 
same hearing impossible. Those drawbacks of conventional 
stethoscopes paved the way of modern phonocardiography. A 
phonocardiogram (PCG) is a high-quality graphical record of 
heart sounds which are captured and stored in electronic 
environment with the help of the machine called phonocar-
diograph [10]. Digitalization of heart sounds allowed the 
transmission of recordings to computers, automated analysis, 
long-term storage and graphic visualization [11].  

Computer aided auscultation improves recognition of 
pathological signs and it is preferred for many reasons. On 
one hand, temporal rate of various sound components can be 
seen better in PCG records by time-scaling. Medical interns 
find it useful to study internal structure of the heart sound 
signals. On the other hand, it can be supported by 
concurrently collected ECG signals. ECG signals are 
especially useful when they are used for segmentation of 
cardiac cycles since there is observable correlation between 
ECG and PCG [12]. 

Computerized heart sound analysis has been focused 
widely and many studies have been conducted with different 
datasets and state-of-the-art methods. Those studies have 
been reviewed, compared and discussed in the literature by 
researchers. In this study, we present a novel review study in 
which major steps of heart sound analysis is discussed 
comprehensively. Additionally, feature engineering and 
important heart sound features are looked through 
systematically. As a contribution to the literature, recent 
datasets are presented in detail. Finally, heart sound 
classification methods are evaluated in a consistent manner.  

Acoustic properties of the heart  

In essence, computer aided auscultation is similar to 
acoustic signal processing since the sounds heard from 
cardiovascular system have the same spectrum as that of 
audio signals [12]. PCG records are examined for abnor-
mality detection, heart sound localization and classification. 
The most common challenges of automated heart sound 
analysis are poor recording quality and environmental noises 
such as breathing of patients and rustlings of the microphone 
[5]. Additionally, like other biologic signals, heart sounds are 
non-stationery and they show sudden frequency changes. 
Moreover, frequency bands of their internal components are 
very close.  

Under normal conditions of cardiac cycle, heart 
generates a dominant pair of sounds namely S1 and S2. They 
are also known as fundamental heart sounds (FHS) and 
basically described as lub-dub sounds of the heart [13]. Both 
S1 and S2 consist of two components. Closure of mitral and 
tricuspid valves produces the M1 and T1 sounds which form 
the S1 together. Similarly, closure of aortic valve produces 
A2 sound and pulmonic valve produces P2 sound. A2 and P2 
are the components of S2. In normal cases, the time interval 
between M1-T1 and A2-P2 is not to exceed 30 ms [14]. 
Having a larger time interval between FHS components is an 
anomaly and, in such cases, those split sounds can be heard 
separately. Frequency ranges of S1 and S2 are 10-140 Hz and 
10-200 respectively [15]. 

In addition to FHS, gallop rhythms (namely S3 and S4) 
and heart murmurs can be detected in PCG records as well 
[16]. S3 and S4 are known as extra heart sounds and they do 
not exist in most adults. Even when they are occasionally 
found, they are difficult to be distinguished by auscultation 
[14]. S3 occurs at early diastole while S4 takes place at late 
diastole just before the onset of S1. Frequency ranges of both 
S3 and S4 are 20-70 Hz [15]. On the other hand, heart 
murmurs have a larger frequency range of 200-600 Hz [16]. In 
medicine literature, a heart murmur is a rustling sound made 
by abnormal turbulent blood. Common causes of heart 
murmurs can be grouped as septal defects, valve abnormalities 
and heart muscle disorders (cardiomyopathy). Regurgitation 
through valves, stenosis of valves, septal/valvular defects and 
perforations can make a whistling sound indicating 
abnormality in blood circulation. Intensity, frequency, location 
and duration of those sounds are carefully examined in PCG 
records for cardiovascular diagnosis. 

Heart murmurs are categorized according to their 
occurrence during cardiac cycle. Firstly, systolic murmurs 
are seen at the beginning of S1 and ends before S2. Secondly, 
diastolic murmurs take place during diastole such as aortic 
and pulmonary valve regurgitations. Finally, continuous 
murmurs are seen through all cardiac cycle [14]. In Figure 1 
various PCG records are shown.  
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Figure 1. Pathologic and normal PCG records are exhibited. a: normal, b: aortic-insufficiency, c: aortic-stenosis-early,  
d: aortic-stenosis-late, e: atrial-septal-defect, f: mitral-regurgitation, g: mitral-stenosis, h: patent-ductus-arteriosus,  
i: pericardial rub, j: pulmonic-stenosis, k: s3 exists, l: s4 exists. Data obtained from University of Washington Heart Sound 
database in wav format and plotted as figure in MATLAB environment by us. 
 
 
Heart sound localization 

During auscultation, a clinician focuses on hearing the 
lubs and dubs of the heart to follow cardiac cycles. 
Determination of cardiac cycles and then localization of 
temporal positions of S1 and S2 is also known as 
segmentation. PCG records are divided into four segments: 
S1, systole, S2 and diastole [5, 12, 15, 17]. The time 
interval between ending of S1 to beginning of S2 is defined 
as systole and the time interval between the ending of S2 to 
onset of S1 is named as diastole. Temporal ratios of 
segments to each other and overall cardiac cycle is 
considered as an important feature in machine learning 
based studies. Moreover, envelopes, morphological and 
statistical properties of each segment can be examined 
separately. Expected temporal durations of those segments 
according to Schmidt et al. [18] is given in Table 1. 

 

Table 1. Cardiac cycle segments and their durations 

Segment Mean (ms) 
± Difference in 95% 

confidence interval (ms) 

S1 122 32 

Systole 208 80 

S2 92 28 

Diastole 523 311 

 

 
Figure 2. Synchronously collected ECG and PCG records 
example. Four states of PCG (S1, systole, S2 and diastole) 
are shown. Adapted from [17]. 
 
Heart sound datasets 

In this section, we presented the datasets used in several 
studies. Those datasets are grouped into two categories: 
individual and public. Individual datasets belong to 
researchers, hospitals or small communities. They have 
been used in limited number of studies. On the other hand, 
public datasets are generally shared with larger 
communities and they have been used in researches world-
wide. Some of them were used in contests and participants 



 Review of Heart Sound Analyses from Phonocardiogram Records 
 

 3171 

developed state-of-art methods and tested them by using 
those PCG records.  

PCG based computer aided diagnosis has been studied 
for decades. Early studies based on individual datasets and 
involved relatively small number of samples by which CNN 
based methods can be poorly trained. Another problem of 
working with PCG datasets is dissonance among the age 
range of the subjects. Datasets composed of children and 
teenagers is expected to show high heart rhythm variability 
[19]. Also, structural similarities between normal and 
abnormal PCG records make the classification task more 
challenging and hand-crafted studies based on selected 
features from small datasets are prone to overtraining [20]. 
Many studies present high accuracies but a direct comparison 
between those studies is not possible due to use of 
uncommon datasets. To overcome those constraints, larger 
public PCG datasets were prepared and made available for 
computation challenges like PhysioNet CinC/2016. 

Researchers used different sampling frequencies during 
data acquisition for different datasets. 2 kHz can be 
accepted as the minimum limit of sampling frequency since 
there is not heart sound components with frequency higher 
than 1000 Hz [8, 21, 22].  

 

 
Figure 3. Structural similarities between normal and 
abnormal PCG records make heart sound classification 
more challenging. Normal PCG records: a, c and e. 
Abnormal PCG records: b, d and f. Similar records are 
shown by arrows. Adapted from [20]. Data from 
PhysioNet/CinC dataset. 

 
Individual datasets 

Bhatikar et al. [23] collected a total of 241 PCG records 
with murmurs (pathologic or innocent) from pediatric 
patients of cardiology clinic of The Children’s Hospital, 
Denver, Colorado. Durations of the data were in the range 
of 10-15 seconds and sampling frequency was 44.1 kHz. 
Cardiac cycles were segmented manually by clinicians. 
Ahlstrom et al. [24] used a database recorded at the 
Department of Internal Medicine at Ryhov County 
Hospital, Jönköping, Sweden and at the Department of 
Clinical Physiology, University Hospital, Örebro, Sweden. 
Tang et al. [22] collected concurrent ECG and PCG data in 

their laboratory and used sampling frequency as 2 kHz 
accepting dominant frequency of heart sounds do not 
exceed 600 Hz. Zhang et al. [25] studied heart sounds after 
medical heart valve replacement operation. They used a 
database of 150 heart sounds which are generated by 
artificial (mechanical prosthetic) heart valves. Dataset was 
separated into five classes and sampling frequency was 
used as 8000 Hz. Moukadem et al. [26] used a database of 
80 records and half of them were pathological. 
Gharehbaghi et al. [27] tried to separate innocent murmurs 
from pathological ones by using four data sets consisting of 
10 second duration concurrent ECG and PCG. Those data 
sets were collected from volunteered patients at Linköping 
University hospital and Tehran Children Medical Center. 
Springer et al. [17] used 405 synchronous PCG and ECG 
records of 30-40 seconds which are collected from 123 
adult patients at Massachusetts General Hospital. Karar et 
al. [28] used a database provided by CliniSurf, Faculty of 
Medicine, University of Bern, Switzerland. The database 
consists of 19 abnormal and 3 normal heart sounds. Each 
record has got about 15 cycles and sampling frequency is 
44.1 kHz. Othman and Khaleel [29] used a database of 9 
PCG records consisting of 3 normal, 3 abnormal with mitral 
regurgitation and 3 abnormal with mitral stenosis. Bozkurt 
et al. [30] used UoC-Murmur database (466 records) 
belonging to University of Crete, Greece. The concurrent 
PCG and ECG records were collected from children of 8-
years-old age and classified by pediatric cardiology experts 
either as normal or as pathologic. Durations of them change 
in the range of 4-10 seconds and sampling frequency is 44.1 
kHz. Aziz et al. [31] built their own PCG dataset by using 
their own data acquisition system at Rawalpindi Institute of 
Cardiology, Rawalpindi, Pakistan. From 56 subjects, they 
collected 140 normal and 140 pathologic (85 arterial septal 
defect, 55 ventricular septal defect) PCG records which 
were labeled by expert cardiologists into three classes 
(Normal, ASD, VSD). Sampling frequency was 44100 Hz 
and the duration of each record is 5 seconds. Yaseen et al. 
[32] build a database from public premade sources. They 
randomly selected 1000 PCG records from five different 
classes (200 records per each class). Those records were 
labeled by experts as normal, aortic stenosis, mitral 
regurgitation, mitral valve prolapse and mitral stenosis 
heart sounds. PCG records were resampled to 8000 Hz and 
stored in wav format. Safara et al. [33] used a dataset 
consists of 59 heart sounds (16 normal, 43 pathological). 

 
Publicly available datasets 

Texas Heart Institute Heart Sound Series 
The database produced by the Robert J. Hall Heart Sounds 
Laboratory of Texas Heart Institute at St. Luke’s Episcopal 
Hospital in 2009. The database includes 44 types of heart 
sounds [34] but it is not available now. 

E-General Medical 
A cardiac auscultation database of size 64 records was 

provided by eGeneral Medical Inc. It used to require 
payment for all database [15] but a part of it was free [12]. 
Database consisted of normal sounds, S3, S4 and different 
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pathologic cases. It has been used in several studies [16] 
and today it is not available online. 

Frontiers in Bioscience 
A total of 25 records available from int-prop.lf2.cuni.cz/ 

heart_sounds/h14/sound.htm. Records are in wav format and 
their durations change in the range of 1.50 to 4.26 seconds. 

Thinklabs Heart Sound Library 
105 heart sounds in the range of 10-50 seconds. Available 

from Thinklabs’ youtube channel https://www.youtube.com/ 
c/Thinklabs1.  

University of Washington 
Different kinds of murmurs, split heart sounds and 

normal records present in wav format. Available from 
https://depts.washington.edu/physdx/heart/tech1.html. 

3M Littmann Heart and Lung Sounds Database 
PCG files are divided according to auscultation area. 

Records can be listened from browser. A total of 51 records 
available from http://www.3m.com/healthcare/littmann/ 
mmm-library.html. 

Heart Sound & Murmur Library Open Michigan 
University of Michigan Health Systems provided an 

online database to educate undergraduate medical students 
and teach them clinical auscultation skills. The Michigan 
heart sound and murmur database (MHSDB) includes 23 
records in mp3 format. It is available from 
www.med.umich.edu/lrc/psb_open/html/repo/primer_hear
tsound/primer_heartsound.html. 

Cardiac Auscultatory Recording Database (CARD) 
John Hopkins Outpatient Center Pediatric Cardiology 

Clinic digitized their clinic examinations in 1997. CARD is 
built from simultaneous PCG and ECG records of 
volunteered patients. CARD also includes clinical data for 
each case described by responsible cardiologist. 20 second 
duration recordings obtained from more than 1200 patient 
forms the CARD [35]. Audio files are stored in wav format 
and sampled at 4 KHz. It is available from 
http://murmurlab.com/card6/ after registration. 

PASCAL (Pattern Analysis, Statistical modelling and 
ComputAtional Learning) 

PASCAL [36] heart sound database was shared publicly 
in 2011 for two challenges. First competition was for heart 
sound segmentation and the second competition was for 
heart sound classification. The data were gathered from two 
sources and grouped into two (A and B). Group A was 
gathered by patients using iStethoscope Pro iPhone app. On 
the other hand, samples of group B were collected in 
hospital environment by physicians [37, 38]. The first 
group consists of four categories while the second group 
has only three categories of heart sounds. Sampling rate is 
44100 Hz and the samples are stored in wav format. 
Durations of the samples vary in the range of 1 to 30 
seconds [15] [36]. It has been used in several researches and 
it is still available online [39]. Details of it is given in the 
Table 2. 

Table 2. PASCAL heart sound dataset details. Categories 
and number of samples in them are shown. Resource [36] 
 

 Train Test 

Group Normal Murmur 
Extra 
heart 
sound 

Artifact Unlabeled 

A 31 34 19 40 52 
B 319 93 46 - 195 

 

Physionet CinC/2016  
Similar to PASCAL dataset, PhysioNet heart sound 

dataset was built for a challenge in 2016. It was assembled 
from nine independent heart sound databases which were 
collected by seven distinct groups. Therefore, data 
acquisition hardware, data quality, labeling details and 
sampling frequencies were slightly different. In order to 
overcome this heterogeneity problem, all samples were 
resampled to 2 KHz and provided as wav files after anti-
aliasing filtering [15]. Avoiding from specific diagnosis 
details, only three labels were assigned to PCG records: 
normal, abnormal and unsure.  

The dataset is divided into train and test sets. While 
there is open access to train set, the test set is kept private. 
Submissions of the 2016/CinC challenge participants were 
ranked according to their performance on the test set. 
Moreover, poor signal quality and good signal quality were 
weighted differently during competition. Signal quality 
information is not available for train set. Details of the 
samples are given in the Table 3. 

 
Table 3. PhysioNet database details. Resource [15] 

   Set Patients PCGs Abnormal Normal Unsure 
Train-A 121 409 276 116 17 
Train-B 106 490 73 295 122 
Train-C 31 31 20 7 4 
Train-D 38 55 26 26 3 
Train-E 356 2054 146 1781 127 
Train-F 112 114 31 78 5 
Total 764 3240 572 2303 365 
Test-B 45 205 32 100 73 
Test-C 14 14 9 4 1 
Test-D 17 24 11 11 2 
Test-E 153 883 59 763 61 
Test-G 44 116 21 95 0 
Test-I 35 35 21 12 2 
Total 308 1277 153 985 139 

 

Currently, the PCG dataset of PhysioNet is the largest 
one among other publicly available databases [40]. PCG 
records have different durations in the range of 5-120 
seconds. Records are mono channel with 16-bit resolution 
in little-endian format. In addition to PCG, there is also 
simultaneously recorded ECG data for each sample of 
Train-A set. Train part of the database is available from 
https://physionet.org/content/challenge-2016/1.0.0/. 
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Materials and Methods 

Research area of heart sound examination is an 
intersection of pattern recognition and signal analysis. 
Computer aided auscultation studies generally focus on 
either heart sound segmentation or on classification of heart 
sounds for detecting abnormalities [41]. But many 
classification studies [42] involve segmentation as a sub-
step even though their main target is classification of heart 
sounds. Segmentation is not a fundamental prerequisite 
and, in the literature, there are classification studies which 
do not involve segmentation at all such as [43, 44]. On the 
other hand, localization of heart sounds and segmentation 
is the main purpose of many studies [17]. The general 
structure of the proposed methods in the literature is as 
follows: preprocessing, segmentation, feature extraction 
and classification.  

 
Preprocessing 

The main processes applied on the signal during 
preprocessing phase include filtering, resampling, baseline 
removal, denoising, decimation and normalization. 
Filtering is generally the first step of preprocessing. It can 
be done by amplitude or frequency-based filters. Potes et 
al. [45] used a band-pass filter of 25-400 Hz. In several 
studies [46, 47] Butterworth bandpass filter of 25-400 Hz 
was applied to remove high frequency noise and low 
frequency artifacts. In [48] fourth order Butterworth high-
pass and low-pass filters were used with 600 and 25 Hz 
cutoffs while in [49] 57th order Butterworth lowpass filter 
with 900 Hz was used. In [50] 3th order median filter and 
10th order Butterworth low-pass filter with 150 Hz cutoff 
were applied. In another study [51] a model was proposed 
for separating breathing sounds from heart sounds based on 
Kalman filter. They used synthetic data which were 
prepared by adding Gaussian noise (representing the 
respiratory sounds) to real acquired heart sound signal. In 
order to obtain segments from pathological records, Atbi 
and Debbal [52] used a low-pass FIR filter with 100 Hz 
cutoff frequency eliminating all high frequency 
components.  

Many researchers normalized the signal into the [-1, 1] 
range by dividing with absolute maximum of the signal [16, 
34, 53]. Some choose to normalize according to Equation 1 
to obtain more visible peaks while weaking the noise [52, 
54]. Another widely used normalization method [17, 39, 
48] is z-score normalization. Safara et al. [33] normalized 
the signal according to Equation 2. Several studies [55, 56] 
involve baseline removal in this phase. 

௡௢௥௠ݔ  = ( ௫୫ୟ୶ (|௫|))ଶ     (1) 

௡௢௥௠ݔ  = ௫ඥ∑௫మ     (2) 

In many studies, the classifier models need a uniform 
input shape. For example, inputs of CNN models and 
spectrograms of signals should have same dimensions to be 
processed. However, the datasets contain PCG records with 
variable length and/or different sampling frequencies. 
Features such as MFCC extracted from those signals differ 
in dimensions. Resampling and decimation are used to 
build a uniform input shape. Those steps beyond providing 
a uniform input shape also reduces computational cost. In 
studies [20, 45, 46, 48] PCG signals were down sampled 
from 2 kHz to 1000 Hz. Rubin et al. [57] decimated the 
PCG records to 3 second duration instances. In another 
study [58], first 5 seconds of the records were clipped and 
the remaining parts were discarded. Potes et al. [45] used 
2.5 seconds decimation while shorter records were zero 
padded.  

Another preprocessing step is denoising. Aziz et al. [31] 
used EMD for denoising. Gradolewski et al. [59] used 
Wavelet Packet Decomposition (WPD) to denoise PCG 
signals contaminated by white and pink noise. Similarly, 
Discrete Wavelet Transform was used in several studies [8] 
for denoising purposes by using thresholds. Threshold 
based denoising is either done by removing all samples 
below the threshold (hard thresholding) or it is done by 
producing a smoother transition over deleted values by 
subtracting threshold value from samples (soft 
thresholding) which are given in Equations (3-4). 

(ݐ)(்)௧௛௥ݕ  =  ൜(ݐ)ݕ|    ,(ݐ)ݕ| ≥  ൠ  (3)݁ݏ݅ݓݎℎ݁ݐ݋         ,0ܶ

(ݐ)(்)௧௛௥ݕ  =  ቐ (ݐ)ݕ + (ݐ)ݕ          ,ܶ < −ܶ0,             − ܶ ≤ (ݐ)ݕ ≤ (ݐ)ݕܶ − ܶ,               ܶ <  ቑ (4)(ݐ)ݕ

 

Segmentation 

Segmentation can be done by using simultaneously 
recorded ECG data [8, 24, 27]. Temporal segmentation of 
cardiac cycle is relatively easy by using ECG because its 
(PQRST) structure can clearly show the beginning and 
ending points of cycles. Moreover, it is more noise-free 
unlike PCG records. While interpreting ECG records, S1 is 
expected shortly after R peaks and S2 occurs at the end of 
the T wave [17]. However, the main disadvantages of this 
approach are needing auxiliary data and synchronizing it 
exactly with the PCG signal’s timing. 

Another segmentation approach depends solely on 
PCG. ECG-independent approach consists of various 
methods. Generally, envelope of the signal is extracted and 
used in this process. Envelope extracting approaches can be 
conducted with different mathematical properties of signals 
such as Shannon energy [37, 60, 61], Shannon entropy [62], 
variance fractal dimension [63], Hilbert-Huang transform 
[64] and autocorrelation [34]. Equations (5-9) can be used 
to map the original signal to non-negative domain for 
envelope extraction [29, 53]. 



ALI FATIH GUNDUZ 
 

 3174 

Absolute value: E = |Si|    (5) 

Energy: E = ௜ܵଶ     (6) 

Shannon entropy: E = -|Si| log |Si|   (7) 

Shannon energy: E = - ௜ܵଶ log ( ௜ܵଶ)   (8) 

Average Shannon energy: Eavg = - ଵே ∑ ௜ܵଶlog ( ௜ܵଶ)ே௜  (9) 

In the literature, there are methods based on amplitude 
thresholding such as [53, 65] and [66].  Similarly, peaks 
within predefined intervals are considered as S1 and S2 [9]. 
In an alternative approach, Ghosh et al. [61] segmented 
PCG records based on systolic and diastolic time intervals. 

In several studies Hidden Markov Models (HMMs) are used 
for segmentation such as [67-69]. Schmidt et al. [18] proposed 
a hidden semi–Markov Model (HSMM) modeling the expected 
durations of the segments. Springer et al. [17] improved HSMM 
based approach of [18] by novel contributions such as adding 
probability of staying in a state for a defined duration, modifying 
Viterbi algorithm, applying Logistic Regression and then used a 
combination of homomorphic, Hilbert, PSD and Wavelet 
envelopes. In their study, the gold standard of the FHS positions 
in the PCG is derived from synchronously gathered ECG 
records. Abdollahpur et al. [48] proposed a novel method for 
cycle quality assessment build upon the work of [17]. After 
segmentation, original PCG signal is split into four distinct 
signals whose features are extracted and interpreted individually.  

 
Feature engineering 

PCG signals contain large number of samples and 
success of signal processing methods depend on extracting 

meaningful features from the signal. Features can be 
extracted from signals in time, frequency and time-
frequency domains. In many studies, different features 
collected from distinct features are combined. However, 
when the number of extracted features increase 
dramatically, computational cost increases as well. In such 
cases dimension reduction methods Principal Component 
Analysis (PCA), Singular Value Decomposition (SVD) or 
Independent Component Analysis (ICA) are applied in 
several studies [70-72]. Another solution of this problem is 
to choose the most meaningful features and not to increase 
feature set sizes by using rest of the features. 

Alternatively, deep learning-based classification 
methods do not need manual feature engineering. Those 
models can be applied directly on either PCG signals or on 
envelograms obtained from those signals without feature 
extraction [73]. The researchers can use those models as is 
or they can just take the generated features by those models 
to use with conventional classifiers [74].  

 
Time Domain Features 

Time domain features of a signal present the statistical 
attributes changing over time. PCG signals have various 
morphological characteristics which can be observed from 
time domain perspective. Most commonly used time 
domain features such as mean, standard deviation, median, 
signal energy, maxima, minima and zero-crossing rate are 
calculated directly from the signal itself. Moreover, signals 
can be converted into probability density functions and 
their entropies can be calculated by different methods. 
Some of the time domain features widely used in the 
researches are given in the Table 4. 

 
 

 
  

Table 4. Time domain features 

Feature Formula Ref 

mean ̅ݔ = 1ܰ ෍ ே௜(݅)ݔ  [75-77] 

Standard deviation ݏ = ඨ 1ܰ ෍ (݅)ݔ) − ଶே௜(ݔ̅  [75-77] 

Skewness ൤ 1ܰ ෍ (݅)ݔ) − ଷே௜(ݔ̅ ൨ ଷൗݏ  [75-77] 

Kurtosis ൤ 1ܰ ෍ (݅)ݔ) − ସே௜(ݔ̅ ൨ ସൗݏ  [75-77] 

Median Middle value or average of two middle values for arrays with even 
number of samples [77] 

Maxima, minima  [76] 

Zero crossing rate 
12ܰ  ෍ [(݅)ݔ]݊݃ݏ| − ݅)ݔ]݊݃ݏ  − 1)]|ே

௜ୀଵ  [13, 76] 

Shannon entropy −෍ ௜݌| ∗ log (݌௜)|௡
௜  [76] 

Avg Shannon enrgy - ଵேೞ೐೒ ∑ ௜ܵଶlog ( ௜ܵଶ)ேೞ೐೒௜  [24] 

Karcı entropy ෍ ఈ(௜݌−)| ∗ ln(݌௜)|௡௜  [13] 
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Percentile rate 
25௧௛75݈݁݅ݐ݊݁ܿݎ݁݌௧௛ [77] ݈݁݅ݐ݊݁ܿݎ݁݌ 

RMS ඨ 1ܰ ෍ ଶே௜(݅)ݔ  [76] 

Zero cross rate Rate of sign changes at signal [76] 

Total original signal power ෍ ଶܰே௜(݅)ݔ  [38] 

Avg widths of segments  [71] 
Ratios of segments’ avg widths 
to each other 

 [78] 

  
Frequency Domain Features 

When a sinusoid signal is added with another one the result 
is another sinusoid signal but may be shifted in amplitude, 
phase and frequency. Assuming the general formula given in 
Equation 10 is valid for the signals of interest, amplitudes of 
different frequency components provide meaningful features. 
In the Equation 10, A is amplitude, f is frequency, t is time and 
θ is phase offset in radians. 

(ݐ)ݕ  = ∑ ௜ܣ  sin (2ߨ ௜݂ݐ + ௜)௜ߠ    (10) 

But frequency domain features lack the ability of 
indicating temporal positions of abnormalities. Moreover, 
suitability of them is often criticized due to the non-stationary 
structure of PCG signals. They are generally considered 
insufficient alone however they are used together or within 
other methods. Those features are used for band-pass filter 
banks and zero crossing analysis [40]. 

Fourier Transform (FT) 
FT provides frequencies and their magnitudes of a 

signal and it is very useful for stationary signals. FT 
technique is used to examine harmonic components of a 
signal by transforming the signal from time domain to 
frequency domain. FT provides valuable information about 
frequency bands but it lacks the capacity of locating the 
frequency regions in time. Another major disadvantage of 
FT is that it cannot be applied on multi-channel signals. 
Debbal et al. [79] applied Fast Fourier Transform (FFT) on 
PCG data and detected FHS frequencies in the spectrum 
(gathered around 40-200 Hz) however they concluded that 
duration and transient variations cannot be detected by 
FFT. Bhatikar et al. [23] used 0-300 Hz energy spectrum 
obtained by Fast Fourier Transform. 

 ݁௜௫ = cos(ݔ) +  (11)    (ݔ)݊݅ݏ݅

(݂)ܨ  =  ∫ ஶ௧ୀିஶ(ݐ)݂ ݁ି௜ଶగ௙௧݀(12)   ݐ 

Direct Cosine Transform (DCT) 
DCT can be used for audio and image signal compression. 

Discrete time domain signal is firstly converted into a sum of 
cosine functions with different frequencies. Their amplitudes 

are interpreted as the features. In essence, DCT is similar to 
FT but DCT uses only cosine functions for transformation 
and output values are real numbers.  

 
Time-Frequency Domain Features 

Short Term Fourier Transform (STFT) 
STFT was developed to overcome time resolution 

problem of FT. STFT assumes that some portion of an input 
signal is stationary. Each stationary-accepted sub-region is 
applied FT and then all parts are added up. STFT formula 
is given in Equation 13 where w(t) is window function. 

 H(t, f) = ∫ℎ(ݐ)ݐ)ݓ − ߬)݁ିଶగ௙ఛ݀߬  (13) 

In STFT, there is a trade of between time and frequency 
resolution. Fixed size windows of STFT affect the time-
frequency representation. As window size increases, 
frequency capturing performance rises but time resolution 
decreases. Conversely, if window size is kept small then time 
domain gets more accurate while losing frequency 
information. 

Wavelet Transform (WT) 
Being a better alternative than FT and STFT, WT was 

originally developed to optimize frequency dependent 
temporary resolutions [80]. WT can be defined as a short 
wave that has an average value approaching zero. The energy 
carried by the wave is condensed in time. WT provides good 
resolution both in time and frequency domains. 

 
Figure 4. DWT decomposition scheme. D: detail, A: approxi-
mation, h: low-pass filter, g: high-pass filter 
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When an orthogonal basis function is used as wavelet, 
the WT is named as discrete wavelet transform (DWT). If 
a non-orthogonal basis function is used as wavelet, then the 
transform is called as continuous wavelet transform (CWT). 
Another effective wavelet-based feature extraction method is 
wavelet packet decomposition (WPT). Similar to STFT, its 
top level is good in time resolution and as level 
decomposition goes on temporal resolution decreases in the 
favor of frequency resolution. WT is used for denoising, data 
compression, obtaining sub-band features and visualizing 
spectral components as well. The general formula is given in 
Equation 14 where ψ(t) is wavelet function, ϕ(t) is scaling 
function, h(t) is low-pass impulse response and g(t) is  
high-pass impulse response, ci and di,j are coefficients [12]. 

(ݐ)ݕ  =  ∑ ܿ௜߮௝(ݐ) + ∑ ∑ ݀௜,௝߰௜,௝(ݐ)ஶ௝ୀିஶஶ௜ୀିஶஶ௝ୀିஶ  (14) 

Empirical Mode Decomposition (EMD) 
EMD is proposed as a part of Hilbert-Huang Transform 

[72] and it has been used for many purposes such as denoising 
[31], detection of heart sounds [81] and segmentation [50]. 

EMD iteratively reduces the input signal into intrinsic 
mode functions (IMFs) and a residual. The process of 
extracting IMFs from the raw signal is known as sifting. 
The original signal can be expressed in terms of IMFs and 
residual signal as given Equation 15. An IMF must satisfy 
two requirements. First, in the whole dataset, the number of 
extrema and the number of zero-crossings must either be 
equal or differ at most by one. Second, at any point, the 
mean value of the envelope defined by the local maxima 
and the envelope defined by the local minima is zero. 

(ݐ)ݕ  =  ∑ ℎ௞(ݐ) ே௞ୀଵ +  (15)   (ݐ)ݎ

After IMFs are obtained, they can be examined 
individually. Generally, the first IMF is discarded since it 
contains high frequency components. Time and frequency 
domain features can be extracted from IMFs.  

The main steps of sifting are: 
1. Calculating all of the local minima and maxima 

from the signal y(t) 
2. Cubic spline interpolation is applied on local 

minima and maxima in order to obtain envelopes ݁௠௜௡(ݐ) and ݁௠௔௫(ݐ) 
3. Mean of upper and lower envelopes are calculated 

according to Equation 16. 
(ݐ)ܽ  = (݁௠௔௫(ݐ) +  ݁௠௜௡(ݐ)) /(16)  2 

4. Mean envelope is subtracted from the original 
signal y(t) to obtain ith IMF ℎ௜(ݐ) according to 
Equations 17, 18. 
 ℎ௜(ݐ) = (ݐ)ݕ − (ݐ)௜ݎ (17)    (ݐ)ܽ = (ݐ)ݕ − ℎ௜(ݐ)    (18) 

5. Treat ݎ௜(ݐ) as the new signal and repeat steps 1-4 
until residual signal contains no more IMF 
 

Mel-Frequency Cepstral Coefficients (MFCC) 
MFCC is a well-known technique used in speech 

recognition and speaker identification. It has also found 
usage in PCG analysis as well [45]. Human ears do not 
perceive pitch linearly. Mel scaling aims to mimic human 
auditory systems by mapping the frequencies below 1000 
Hz linearly and by mapping the frequencies above 1000 Hz 
logarithmically [12].  

To obtain MFCC features, pre-emphasizing is the first 
step in which high frequencies are amplified. Then the 
quasi-stationary signal is divided into short frames across 
which the signal is assumed to be stationary. Generally 
consecutive frames overlap a pre-defined amount of time. 
Then a window (such as Hamming, Hanning or etc.) is 
applied on the frames to reduce edge effects and smooth the 
edges. Then Discrete Fourier Transform is applied on the 
windowed frames to compute the periodogram. Then the 
Fourier transformed signal is passed through Mel-filter 
bank (a set of bandpass filters). This phase results in non-
linear frequency resolution. It is given in Equations (19-20) 
where f is physical frequency and fMEL is its Mel-frequency 
representation. ܺ(݇) =  ∑ ேିଵ௡ୀ଴(݊)ݔ ݁షೕమഏ೙ೖಿ ;  0 ≤ ݇ ≤ ܰ − 1 
      (19) 

ெ݂ா௅  =  2595 logଵ଴ ቀ1 +  ௙଻଴଴ቁ   

      (20) 

Now Mel spectrum is fit into log format in which most 
of the signal information is represented by the first few 
coefficients. M is total number of Mel weighting filters and 
Hm(k) is the weight given to kth energy spectrum bin 
according to Equation 21. 

 ௙ܲ௜௟௧ = ∑ [|ܺ(݇)|ଶܪ௠(݇)]; 0 ≤ ݉ ≤ ܯ − 1ேିଵ௞ୀ଴  (21) 

Finally, MFCCs are obtained by taking a discrete cosine 
transform. This process converts the Mel spectrum to finite 
sequence of cosine functions oscillating at different 
frequencies. In Equation 22, MFCC(t,k) is kth cepstral feature 
of tth time frame and Pfilt(t,n) is filtered power at time frame t 
for nth filter bank. The number of MFCCs for each frame is 
C and zeroth coefficient can be excluded since it represents 
the average log energy of the input signal. 

,ݐ)ܥܥܨܯ  ݇) =  ∑ log ( ௙ܲ௜௟௧(ݐ,݊))cos(௞గே (݊ −ேିଵ௡ୀ଴0.5)) ;݇ = 0,1,2 … ܥ, − 1   (22) 

Classification 

In this section we present a list of proposed solutions with 
year, dataset and performance results. It is not an exhaustive 
list and involves results from previous challenges. 
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Classification is done with many machine learning methods 
including support vector machine, k nearest neighbor, 
multilayer perceptron, decision trees, convolutional neural 
networks and their ensembles. Ensemble classifiers reduces 
the error rate significantly and usually their performances are 
better than their base classifiers [37]. Performance comparisons 
of PhysioNet challenge are done according to Equations  
(28-30) where ݓ௔ଵ,ݓ௔ଶ, ݓ௡ଵ ܽ݊݀ ݓ௡ଶ are weights of good 
signal quality of abnormal, poor signal quality of abnormal, 
good signal quality of normal and poor signal quality of 
normal records. Rules for determining the overall 
classification result of the challenge are given in Table 5. On 
the other hand, the rest of the comparisons are done according 
to well-known formulas given in the Equations 23-27. 

 
Table 5. Rules of PhysioNet CinC/2016 scoring 

Label Quality Weight Predicted 
Abnnormal 

Predicted 
Unsure 

Predicted 
Normal 

Abnormal Clean wa1 Aa1 Aq1 An1 

Noisy wa2 Aa2 Aq2 An2 

Normal Clean wn1 Na1 Nq1 Nn1 

Noisy wn2 Na2 Nq2 Nn2 

 

Classification performance is highly dependent on the 
preprocessing, segmentation and feature extraction phases. 
Several studies are shown in Table 6 with details about used 
dataset, deployed method, extracted features and 
performance results. Comparing them, it is seen that 
classification accuracies change in the range of 75 to 99 
percent. Especially on private datasets, accuracies above 90 
percent are reported generally. On the other hand, challenge 
datasets such as PhsyioNet evaluated performance results 
over hidden test sets avoiding overfitting. Diversity of those 
datasets prevent us from direct comparison between them 
but general trends and validation methods give insight 
about the success of the proposed methods and usefulness 
of the selected features. 

In studies [45, 70, 90, 91], distinct frequency subbands 
of the signal were decomposed and used to extract features 
or envelopes. S1 and S2 intervals are searched for in low 
frequency subbands in [90]. In [45], more features were 
obtained from decomposed subbands. Koçyiğit [70] used 
discrete wavelet transform to get signal subband and then 
applied PCA and ICA dimension reduction methods on it 
to extract features. The extracted features were given to 
Naïve Bayes classifier and 99.8% accuracy was obtained.  

The HSMM-based segmentation method proposed by 
Springer [17] was used by many Physionet 2016/CinC 
contestants in their studies [42, 45, 57, 74-76, 87]. Features 
were extracted from four segments of the detected cardiac 
cycle and variations in the durations of them were 
interpreted as the signs of anomalies. On the other hand, 
some studies [13, 43, 58, 70] processed the PCG signal as 
a whole without using any segmentation method on them. 
When PCG analysis approaches with segmentation-based 
and without segmentation methods are compared, it is seen 
that there is not much difference. For example, in 
PhysioNet 2016 CinC, Potes et al. [45] took the first place 

with a segmentation-based approach by obtaining a score 
of 86.02. However, Zabihi et al. [43] took the second place 
by obtaining 85.90 without applying segmentation. In [45] 
features were extracted from four states in time domain and 
frequency domain while in [43] desired features were 
extracted from whole signal alone. The small difference 
between those studies indicates that selection of features is 
more important for PCG classification than applying state-
of-the-art segmentation methods. 

In earlier studies, different types of Artificial Neural 
Networks (ANN) have been applied [43, 48, 87] to solve 
heart sound classification problem. Features from time, 
frequency and time-frequency domains formed feature 
vectors of sizes 40 to 675. ANN models are trained with 
those feature vectors after applying dimension reduction. 
Accuracies higher than 80% percent are obtained by former 
ANN based approaches. It is also used for segmentation of 
heart sounds. Ghaemmaghami et al. [93] extracted and used 
6 mel-frequency filterbank features to categorize temporal 
frames of audio recordings as S1, systole, S2, diastole and 
noise by using time-delay neural networks (TDNN). TDNN 
is good for detecting local correlations between segments 
and it is able to capture long term temporal correlations 
between cycles frames. Temporal events in heart sounds 
can be detected by TDNN as well. 

Currently researchers’ interest focused more on 
different types of Deep Neural Networks (DNN). For 
instance, Recurrent Neural Networks (RNN) have been 
used in recognizing sequential data for decades and it is 
also applicable on heart sounds since they have strong 
temporal correlation. Vanishing gradient problem of RNN 
is handled by structures like Long-Short Term Memory 
(LSTM) and Gated Recurrent Unit (GRU). Khan et al. [94] 
used LSTM with MFCC features of unsegmented PCG data 
obtaining an AUC score of 91.4% and accuracy above 80%. 
Among the DNN based methods, LSTM models have 
relatively high complexity but they are capable of modeling 
temporal structures and dependencies. 

An alternative of using DNN is to generate 2D images 
or image-like inputs from time series data by applying time-
frequency spectrograms, MFCC or heat maps and then 
training Convolutional Neural Networks (CNN) [57, 82, 
92]. There are also solutions [20, 46, 95] based on 1D CNN 
models which only perform simpler one-dimensional 
convolutions (scalar addition and multiplication) on PCG 
signals. 

Both DNN and CNN methods require large datasets and 
long training time for better classification accuracies. To 
train those models in reasonable time periods, researchers 
generally take the advantage of using modern GPU 
hardware. 

ݕܿܽݎݑܿܿܣ  =  ்௉ା்ே஺௟௟     (23) 

ܴ݈݈݁ܿܽ = ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ = ்௉்௉ାிே   (24) 

ݕݐ݂݅ܿ݅݅ܿ݁݌ܵ =  ்ே்ேାி௉    (25) 
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݊݋݅ݏ݅ܿ݁ݎܲ = ݁ݑ݈ܸܽ ݁ݒ݅ݐܿ݅݀݁ݎܲ ݁ݒ݅ݐ݅ݏ݋ܲ =  ்௉்௉ାி௉ (26) ݁ݎ݋ܿܵ 1ܨ =  ଶ∗௉௥௘௦௜௖௜௢௡∗ோ௘௖௔௟௟௉௥௘௦௜௖௜௢௡ାோ௘௖௔௟௟    (27) 

(݊ݏܯ)ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ ݂݀݁݅݅݀݋ܯ =  ௪ೌభ ஺ೌభ஺ೌభା஺೜భା஺೙భ + ௪ೌమ (஺ೌమା஺೜మ)஺ೌమା஺೜మା஺೙మ      (28) 

(݌ݏܯ)ݕݐ݂݅ܿ݅݅ܿ݁݌ܵ ݂݀݁݅݅݀݋ܯ =   ௪೙భ ே೙భேೌభାே೜భାே೙భ + ௪೙మ (ேೌమାே೜మ)ேೌమାே೜మାே೙మ      (29) 

(ܿܿܽܯ)ݕܿܽݎݑܿܿܽ ݂݀݁݅݅݀݋ܯ =  ௌ௘௡௦௜௧௜௩௜௧௬ାௌ௣௘௖௜௙௜௖௜௧௬ ଶ  (30) 

Table 6. Performance results of studies in the literature 

Ref Year Data Classes Features Methods Results (%) 

[47] 2020 PhysioNet 2 MFCC based 
features 

Convolutional recurrent 
neural network 

Acc: 98.34 
Sen: 98.66 
Spe: 98.01 

[31] 2020 private 3 
MFCC 
1D Local ternary 
patterns 

SVM Acc: 95.24 

[82] 2020 
Dataset of 
Yaseen et al. 
[32] 

5 
Bispectrum images 
(full-image and 
contour) 

CNN  

Full-img 
Acc:98.70 
Sen:98.70 
Spe:99.67 

Contour 
Acc:97.10 
Sen:97.10 
Spe:99.28  

[61] 2020 
Dataset of 
Yaseen et al. 
[32] 

5 
Time-frequency 
domain energy and 
entropy features 

Multi class composite 
classifier Acc: 98.33 

[20] 2020 PhysioNet 2 - 1D CNN 
Sen: 89.67 
Spe: 86.89 
Ppr: 69.70 

[83] 2020 PASCAL 4 & 5 Time domain 
MFCC 

SVM  
kNN 

Acc: 99.25 
Acc: 98.50 

[13] 2020 PhysioNet 2 

Time domain 
Time-frequency 
domain 
MFCC 

Ensemble of kNN, SVM, 
neural networks 

Acc: 90.93 
Sen: 98.00 
Spe: 64.00 

[92] 2019 PhysioNet 2 
STFT spectrogram 
Mel Spectrogram 
MFCC 

CNN (VGGNet) Majority 
voting ensemble 

Acc: 86.04 
Sen: 86.46 
Spe: 85.63 

[46] 2019 PhysioNet 2 
Time-frequency 
MFCC based  
feature maps 

Ensemble of 1D CNN and 
2D CNN 

Acc: 89.22 
Sen: 89.94 
Spe: 86.35 

[84] 2019 
187 PCG 
records from 
PhysioNet 

2 Cochleagram Multilayer perceptron 

Acc: 93.70 
Sen: 84.50 
Spe: 95.20 
F1: 83.50 

[85] 2018 private 2 Time and 
frequency domains 

ANFIS 
HMM Acc: 98.70 

[86] 2018 

Open 
Michigan 
Library 
PASCAL 
PhysioNet 

2 
Time-frequency 
MFCC 
STFT 

Recurrent neural network 
CNN 
Bidirectional long short-term 
memory 

Sen: 96.00 
Spe: 100.00 
F1: 98 

[30] 2018 UoC 
proprietary 2 

Sub-band 
envelopes of 
segmented PCG 

CNN 
Acc: 81.50 
Sen: 84.50 
Spe: 78.50 

[32] 2018 individual 5 MFCC 
DWT 

kNN 
SVM 
DNN 

kNN 
Acc: 97.40  
Sen: 97.60 
Spe: 98.80 
F1: 99.20 
SVM 
Acc: 97.90 
Sen: 98.20 
Spe: 99.40 
F1: 99.70 

DNN 
Acc: 92.10 
Sen: 94.50 
Spe: 98.20 
F1: 98.30 
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[78] 2017 PhysioNet 2 Time, frequency, 
sparse coding SVM 

Macc: 80.70 
Sen: 84.30 
Spe: 77.20 

[49] 2017 Private 2 Time-frequency kNN Acc: 93.20 

[48] 2017 PhysioNet 2 Time, time-
frequency Neural networks 

Macc: 82.63 
Mse: 76.96 
Msp: 88.31 

[42] 2017 PhysioNet 2 Time, frequency, 
time-frequency Ensemble classifiers 

Macc: 80.10 
Mse: 79.60 
Msp: 80.60 

[93] 2017 

Self-collected 
128 records of 
20 seconds 
duration 

5 MFCC Time Delay Neural Network 
Acc: 95.80 
Sen: 83.20 
Spe: 99.20 

[45] 2016 PhysioNet 2 Time, frequency Adaboost & CNN ensemble 
Macc: 86.02 
Mse: 94.24 
Msp: 77.81 

[43] 2016 PhysioNet 2 
Time, frequency 
and time-
frequency 

Ensemble of  
neural networks 

Macc: 85.90 
Mse: 86.91 
Msp: 84.90 

[87] 2016 PhysioNet 2 

Time, frequency 
domain features, 
CWT features, 
MFCC 

Neural networks 
Macc: 85.20 
Mse: 87.43 
Msp: 82.97 

[88] 2016 PhysioNet 2 Time-frequency 
LR 
SVM 
kNN 

Macc: 84.54 
Mse: 86.39 
Msp: 82.69 

[76] 2016 PhysioNet 2 

Time, frequency 
and time-
frequency domain 
features 

Random Forest 
LogitBoost 

Macc: 84.48 
Mse: 88.48 
Msp: 80.48 

[57] 2016 PhysioNet 2 MFCC heat map 
images CNN 

Macc: 83.99 
Mse: 72.78 
Msp: 95.21 

[89] 2016 private 2 MFCC based 
features 

kNN 
GMM 
LR 
SVM 
DNN 

Acc: 78.11 
Acc: 86.98 
Acc: 87.57 
Acc: 90.53 
Acc: 91.12 

[75] 2016 PhysioNet 2 Statistical features 
of WT applied data SVM 

Acc: 74.60 
Sen: 64.40 
Spe: 84.90 

[90] 2016 PhysioNet 2 Statistical features 
Frequency domain Fuzzy logic (PROBAfind) 

Acc: 95.00 
Sen: 93.00 
Spe:  97.00 

[33] 2013 private 4 Time-frequency SVM Acc: 97.56 

[21] 2009 Students’ 
training CD  15 Time-frequency Divergence analysis Acc: 99.00 

[91] 2009 

Littman and 
Frontiers in 
Bioscience 
datasets 

5 Time-frequency 

SVM with several kernel 
functions 
(Best results obtained with 
Gaussian Radial Basis 
Function kernel) 

Acc: 91.43 
Sen: 87.50 
Spe: 94.74 

 
 
Conclusion and suggestions 

In this study we reviewed PCG analysis methods and 
existing databases. Feature extraction techniques and 
methodological approaches are presented and compared. 
Heart sound analysis is an interesting topic and it is still 
challenging. The fundamental heart sounds corrupted with 
various pathological factors. Mitral stenosis, mitral 

regurgitation, aortic insufficiency, aortic regurgitation, 
valve disorders, septal defects and gallop rhythms cause 
heart murmurs that differ from each other with respect to 
frequency and location. Main tasks of heart sound analysis 
focus on detecting murmurs and segmentation. Besides, 
classifying distinct types of murmurs has been targeted by 
several studies. On the other hand, heart sound 
segmentations are done by detecting peak values, using 
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systolic/diastolic temporal assumptions, threshold-based 
methods and using external signals (commonly ECG). 
Environmental and digital noises are tried to be remove 
from heart sounds. For this purpose, signal denoising is 
applied as the first step of automated PCG analysis. It is 
followed by feature engineering in conventional 
approaches but CNN-based methods do not involve feature 
extraction. Those features are grouped in time, frequency 
and time-frequency domains. Wavelet based features are 
most preferred time-frequency domain features and as it is 
seen in Table 6, the most commonly used features belong 
to time-frequency domain. Similar to Wavelet transform, 
EMD is also good at representing the sound signal in time-
frequency domain. After this step, PCG records are 
classified by several algorithms such as HMM, SVM, 
decision trees and neural networks. 

Although the current studies make a good sum, there is 
still room for improvements. Firstly, there is need for a 
universally standardized and open access database. In the 
past, the lack of data was a problem for researchers. 
Researchers generally used private databases decades ago 
but today there are databases like PASCAL, CARD, 
PhysioNet and etc. Among those PCG databases, the 
largest one is PhysioNet with 665 abnormal and 2575 
normal records having an imbalance ratio of 2575/665 = 
3.87. Although it is the largest one, state-of-the-art CNN-
based methods require larger databases with smaller 
imbalance ratio. Secondly, more information on data 
acquisition and auscultation locations should be given in 
those standardized databases. Heart sounds generally 
recorded from aortic area, pulmonic area, tricuspid area and 
mitral area. Depending on the position of the auscultation 
sensor, loudness of first and second heart sounds could be 
captured differently. Finally, data acquisition should be 
improved by avoiding from noise. Additionally, an extra 
classifier can be added to the systems in order to detect 
signal quality. Excluding records with significant 
environmental noise increases methods’ accuracy and 
results in more meaningful conclusions about pathologies. 

Performance of automated heart sound analysis is 
promising and it has many possible benefits. Development 
of computationally efficient methods paves the way of 
intelligent biomedical devices. Smart phones, wearable 
systems and other portable gadgets empower home health 
care systems. Moreover, those equipments could play crucial 
role in monitoring and diagnosis of CHDs in rural areas 
where it is hard to access expert clinicians’ consultation.  
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