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Abstract

Keywords

The Neptune grass (NG) is an endemic plant of the Mediterranean Sea. Successive studies carried 
out show a significant decrease in their presence in this sea. Concern for the conservation of NG im-
plies being able to monitor its evolution and thus be able to determine if its presence is increasing or 
decreasing in seabeds. Nowadays, expensive and limited methods are used to carry out this follow-up, 
which often also involves manual intervention. The work carried out aims to automatically determine 
the type of seabed from underwater images, performing semantic segmentation using deep neural 
networks. In this work, a deep neural network has been implemented to carry out a semantic segmen-
tation of images of the seabed, offering improvements with respect to the techniques currently used to 
obtain this information. The developed neural network allows for distinguishing in the images of the 
seabed the areas of NG, rock, and sand. The possibility of identifying other elements present, such as 
dead NG, both the plant itself and its loose leaves scattered on the bottom, has also been explored in 
this work.

Neptune grass, Deep Neural Networks, underwater images, seabed.
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Introduction
The NG is an aquatic plant endemic to the Mediterranean 

and of great ecological value. It protects the coast from ero-
sion; it is the base of the ecosystem for a multitude of ma-
rine species; it also oxygenates the water and captures CO2, 
making it an element that mitigates climate change. Despite 
being a protected species and carrying out actions for its 
conservation, NG continues to decline due to trawling, boat 
anchors, pollution, climate change, etc.  [1–4]. In order to 
carry out control and recovery, it is necessary to be able to 
monitor the evolution of NG meadows. This monitoring is 
currently being done by:

Divers: So it is a very slow and expensive task.▪▪
Satellite images: detection problems in deep water.▪▪
SONAR: commonly used to make bathymetric maps.▪▪
Autonomous underwater vehicle (AUV) equipped with ▪▪
sensors.
The work carried out identifies the type of seabed from 

underwater images. This identification consists of indicat-
ing in each pixel of the image what it is; in this case, it 
will be indicated in each pixel if it is NG, sand, rock, etc. 
This way of classifying images is called multiclass seman-
tic segmentation. To achieve this semantic segmentation, 
artificial intelligence (AI) will be used, specifically a deep 
neural network. It is intended to automate the detection 
of NG in an AUV, which will make maps of the seabed 
with which to monitor NG. This work is an evolution of 
a work  [5–8]. The improvement consists of carrying out 
multiclass semantic segmentation; that is, the previous 
work only identified in the image if there is NG or not in an 
area. With this work, it is possible to identify, in addition 
to NG, other types of elements, such as if the floor is made 
of sand or rock [9].

Figure 1 shows an example of monoclass semantic seg-
mentation and another of multiclass, where the original 
image has been colored to identify the different types of 
background. Figure 1A(a) shows the monoclass classifi-
cation [10–11], where the green color represents areas of 
NG and the rest of the uncolored image indicates that it is 
not NG. Figure 1A(b) is the case of multiclass semantic 
segmentation carried out in this work. Where, in addition 
to the green color for the NG, the rock is colored red, the 
sand is yellow, and what has not been identified has not 
been colored.

Being able to identify, in addition to the NG, the type of 
soil can help to see the evolution of the growth or regression 
of the NG depending on the terrain. Thus, in addition to be-
ing able to help take actions in certain areas, it also serves to 
monitor their results.

Literature Review
In 1989, M. Doherty proposed using a segmentation 

approach to object detection on sonar images [12]. He ob-
serves that the pixels associated with a target do not have the 
same statistical distribution (in terms of gray levels) as the 
pixels associated with the seabed. He then proposes to carry 
out an appropriate thresholding of the images to highlight 
the echoes. In order to validate the detection, it sets up a 
search for the shadows associated with these echoes using a 
set of smoothing and averaging operations. These premises 
show what will be one of the approaches most commonly 
used in object detection over the following decades, name-
ly a segmentation of the image into three classes: the echo 
of a target, the shadow, and the bottom. In 1995, M. Bello 
introduced random Markov fields in this context and dem-
onstrated that they are suitable for such segmentation [13]. 
These results push M. Mignotte and C. Collet to deepen this 
method  [14–17]. However, due to the significant calcula-
tion times and current computer capacities, it was necessary 
to wait until 2003 and the study proposed by S. Reed and 
colleagues to obtain an efficient algorithm  [18–19]. Using 
a priori spatial information (on target sizes and geometric 
signatures), a detection-oriented Markov field model is then 
developed to segment the image into these three classes. In 
2014, [20] proposed to review this method by applying the 
graph-cuts method  [21] to it to further accelerate the con-
vergence of results. Another approach initiated by B. Calder 
in [22, 23] proposes to use a stochastic Bayesian model in 
order to classify each pixel of an image. For this, it carries 
out Bayesian modelling of the data and uses a Gibbs field 
to model the targets. The approach is considered robust but 
very computationally intensive. F. Maussang et al. [24] have 
also invested in the statistical approach to segment sonar im-
ages and, in particular, SAS images [25–26]. These methods 
are based on the relationship between the mean and standard 
deviation of the Rayleigh distribution of gray levels in so-
nar images. By modelling the responses of the background 
using a Weibull law, they observe that the mean and the 
standard deviation are linked by a multiplicative constant. 
However, for echo and shadow areas, the authors note that 
this relationship is no longer as strict. They then propose to 
take advantage of this by applying two thresholds in a plan 
defined by the mean and the standard deviation. These then 
make it possible to extract the areas of echoes and shadows. 
Salience detection methods are now commonly used and 
propose seeing an object as an anomaly in a textured region. 
They seek to model the differences between a given bottom 
zone and its vicinity. For example, in [27], L. Linett is based 
on the fact that background reverberations can be modelled 
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by a fractional Brownian process  [28], whose distribution 
is described by its fractal dimension. He then considers that 
a region whose fractal dimension is different from these 
neighbours can contain an object. In  [29], L. Attalah uses 
Shannon entropy to detect salient regions. Indeed, he finds 
that regions containing shadows or echoes have a higher en-
tropy than simple seabed areas. Thus, the author proposes to 
detect objects via the detection of peaks in the entropy func-
tion. In [30], the sonar image is broken down into blocks (of 
the typical size of an underwater mine, i.e., of the order of a 
meter), and the author proposes to calculate the correlation, 
according to the columns, between the different blocks from 
the same region. According to the author, underwater mines 
will then have a high correlation value, and a simple thresh-
old would make it possible to detect them. In [30], we pro-
pose a salience detection algorithm whose calculations are 
done through the concept of integral image. The latter makes 
it possible to achieve detection speeds close to real-time on 

SAS images, despite their very large dimensions. From a 
set of sliding windows of varying sizes, the author proposes 
to estimate zones of echoes and shadows using a cascading 
architecture. The simplicity and speed of the algorithm are 
its main assets, which allow it to be one of the few that can 
be implemented on board AUVs. The classification based on 
models is entirely based on a priori knowledge that we have 
about the objects to be detected. This information then makes 
it possible to create a model for each target that one wishes to 
highlight. Such approaches are useful for classifying targets 
on which we do not have many examples (i.e., no learning 
is possible). In the literature on ATR, many methods have 
been proposed, and all rely exclusively on model matching; 
we can cite, for example,  [31]. Only the implementations 
are then different, with a wide variety of algorithms. Some 
of these approaches propose to use contour-based matching 
algorithms like those of S. Reed [18]. Its algorithm allows 
cooperation between active contours to extract the echo and 

a

Α

Β
b

Fig. 1: Α. Comparison of monoclass (a) and multiclass (b) semantic segmentation; B. Labeling of images.
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the shadow of the targets jointly in a complex environment. 
Dempster Shafer’s decision theory is then used to classify 
observed detections against known patterns.

Development of the proposed work
In this work, the necessary neural network has been 

implemented to achieve the semantic segmentation of the 
images of the seabed. To achieve this, the Tensor flow librar-
ies have been used, and the programming has been done in 
Python. The present code is an evolution of a work to detect 
NG [2], which in turn is an adaptation of another work to 
detect roads [7]. In addition to the programming part of the 
neural network, the data for the training sessions had to be 
prepared and the necessary metrics defined to validate the 
results and verify the quality of the models obtained.

 Data collection
For this work, 302 images obtained from recordings 

made by cameras mounted on an AUV have been used. The 
images are of the seabed of the Balearic Islands, especially 
Mallorca. These images are taken with different lighting con-
ditions and water turbulence; this variety makes the trained 
network more versatile. Although the original images may 
have different dimensions, before carrying out the training, 
they are resized to 480x360, which is the size that the imple-
mented neural network supports.

The images have been divided into two collections:
242 images for training (80%).▪▪
60 images for the tests (20%).▪▪
All the images had to be labelled as well. This labelling 

consists of manually performing a semantic segmentation 
for each image; in this way, we will have the desired re-
sults that the neural network needs to train and validate. To 
carry out the labelling of an image, a color must be defined 
for each class that is to be identified. Once the classes are 
defined, each pixel of the original image must be colored 

with its corresponding color. Figure 1B shows an example 
of how an original figure (c) is edited to obtain a labelled 
figure (d).

The colors that have been defined for each class to be 
identified in the underwater images are shown in Table 1.

Architecture used
To implement multiclass segmentation, I have based my-

self on a multilayer neural network, in which the input of the 
network is an RGB color image to which several transforma-
tions are applied, as shown in Figure 2, to achieve multiclass 
semantic segmentation [2].

Table 1. Correspondence of classes and colors
Name Description Color
NG-a Living NG Kill
NG-d dead NG leaves
Rock clean rocky bottom

rock-d Rocky bottom with algae or other elements
sandy clean sand background

Sand-d Sandy bottom with algae or other elements
matte-s Dead NG clump on sand bottom
Matte-r Dead NG clump on rock bottom

Background
Fund that does not correspond to any of the 
classes to be classified or that has not been 

identified

In Figure 2, the number above the layers represents the 
dimensions of the feature maps that are used in that layer. 
The number below the layer represents the number of fea-
ture maps that layer has; in cases where an X is shown, it 
corresponds to the number of classes to be identified.

The layer structure is divided into two phases:
Encoder: in this first encoding phase, the characteris-

tics of the image are extracted using convolution and pool 
layers.

Decoder: in the second phase of decoding, the image 
is reconstructed by means of transposed convolution; in 
this way, the classification of each pixel of the image is ob-
tained.

Fig. 2. Layered architecture of the neural network used
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Encoder

The dimensions of the images to be processed will 
be 480x360 pixels in RGB. In the first stage, the image is 
received and processed by the first convolution layer. This 
first stage consists of 2 layers of 64 convolutions and a layer 
that performs the Max_Pool to reduce the size of the features 
by half (240x180 pixels). The second stage again consists of 
two convolution layers, although now the number of con-
volutions is doubled. When the convolutions are finished, a 
Max Pool is applied again to reduce the dimensions by half 
again (120x90 pixels).

The third and fourth stages follow the same procedure 
by adding a third convolution layer, doubling the number of 
convolutions, and halving the dimensions. In the fifth stage, 
the number of convolutions is maintained and the dimensions 
are reduced by half. In the sixth stage, in addition to the con-
volution layers, some dropout layers are included that are 
only used during training to avoid overfitting. At this stage 
the feature maps have been reduced to a size of 15x12.

3.2.2 Decoder

The decoder contains a map for each class to be classi-
fied. As the decoder stages progress, the size of the maps 
increases until they reach the size of the original image. The 
skip layer basically consists of a convolution of the feature 
map to obtain a new map per class. In the seventh stage, it 
consists of a skip layer, so from the sixth stage onwards, 
one map per class is obtained. The eighth stage consists of a 
transposed convolution that increases the size of the image. 
In the ninth stage, the transposed convolution of the sum 
of the layers of the previous stage and the skip layer of the 
fifth stage are performed, increasing the size of the image 
again. The tenth stage performs the transposed convolution 
of the sum of the layers of the previous stage and the skip 
layer of the fourth stage, increasing the size of the original 

image. In the eleventh stage, the softmax function is applied 
to normalize the result obtained. Finally, in the last stage, 
we obtain a map by class. The value of each position on this 
map represents the probability that this pixel is of being in 
the class of the map. Therefore, to decide which class each 
pixel belongs to, the one with the highest value is chosen. As 
each class is assigned a color at the end, an image is obtained 
where each pixel is classified.

Training
To calculate the values of the neural network model, a 

supervised training phase will be carried out. This training 
consists of adjusting the parameters of the model from a col-
lection of images with their corresponding labelled images. 
Figure 3 shows how an image (a) has been labelled (b) in 
order to carry out the training. Each color represents a class; 
the green is NG, the blue is dead NG, the yellow is sand, and 
the brown is sand with other elements.

 The training consists of processing the images and com-
paring the obtained result with the desired result using a loss 
function. By applying the loss function, the model error is 
obtained, from which the model weights are adjusted. This 
procedure is repeated several times to progressively adjust 
the weights. Using an algorithm called back propagation, 
thanks to the gradient of the loss function, the weights of 
the model are calculated. To avoid overfitting and improve 
the result of the model obtained, dropout layers are usually 
added. Overfitting is a problem that can appear in neural 
networks. What it causes is that the model obtained after 
training works correctly for the images used in the train-
ing but not for the new ones. What the dropout layers do 
is randomly deactivate some connections in the neural net-
work. In this way, the trained network is forced to be more 
versatile, thanks to the fact that the activation of more con-
nections is forced when identifying the characteristics of 
the image [4] and [5]. Figure 4 shows a scheme of how the 

Fig. 3. Image labelling for training
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model is trained so that once it is trained, it can perform the 
inference of new images.

Hyperparameters used in training

There are a number of parameters that are used during 
training that directly influence the output of the trained mod-
el. Some of these parameters are:

Data augmentation consists of increasing the amount 
of data used during training. To do this, modifications are 
made to the contrast and brightness of the images used for 
training, thus increasing the variety of images and reducing 
overfitting.

Learning Rate: This affects how the model converges to 
the result during each step. A larger size can achieve the final 
result sooner, and smaller values obtain more optimal re-
sults. Therefore, it is necessary to determine an appropriate 
value that reaches a compromise between speed and quality 
of the results.

Number of iterations: defines the number of times to 
perform the back propagation and train again.

The suitability of these parameters depends on each 
problem to be solved. In this case, the same ones have been 
used as in work [2]. Since we are facing the same problem, 
the same types of images are used, and the same architec-
ture is used simply by increasing the number of classes to 
be identified. During the training, data augmentation is used, 
with a learning rate of 1e-05 and 16000 iterations.

Models
Due to the different and varied classes present in the 

set of images, it is decided to carry out different training 
sessions, each of them grouping all the classes in a differ-
ent way. In this way, since the input data for the network is 
different, different models will be obtained. The groupings 
made for the different trained models are shown in Table 2.

Because the images labelled as Sand and Sand-d are very 
similar and there are not enough images for the training to be 
effective in distinguishing them, it has been decided to group 
them all in the same Sand class. The same goes for the rock 
class and rock-d, which have been lumped together under 
the rock type.

Model I

When carrying out the training of model I, it has been 
decided to carry out a minimum classification, trying to dis-
pense with the classes that appear less in the images, group-
ing them with the class that most resembles them. For this 
reason, the living NG (NG-a) and the dead NG leaves (NG-d) 
have been grouped into the same class, with all the rocky 
funds in the rock class and all the sand funds in the sand 
class. Table 3 shows the classification used for model I.

Fig. 4. Model training scheme

 Table 2. Grouping of classes for the models used
All classes Model III Model II Model I

Name Description Color Name Color Name Color Name Color

NG-a Living NG Kill NG-a NG-a
NG

NG-d dead NG leaves NG-d NG-d

Rock clean rocky bottom Rock
matte Rock Rockrock-d Rocky bottom with other 

elements
Matte-r Dead NG clump on rock 

bottom sandy
matte-s Dead NG clump on sand 

bottom
Sand Sandsandy clean sand background Name

NG-aSand-d Sand background with 
other elements

Background

Fund that does not 
correspond to any of the 
classes to be classified or 

that has not been identified

NG-d Background Background
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Model II

When model II was carried out, the classification was 
increased by one more class with respect to model I. The NG 
class separates the live NG (NG-a) and the dead NG leaves 
(NG-d). Table 4 shows the classification used for model II.

Model III

In model III, one more class is increased with respect to 
model II. I added the matte class to represent the mats of dead 
NG. Table 5 shows the classification used for model III.

Metrics of a neural network
To determine the quality of the results obtained in the 

classification of the neural network, a series of metrics such 
as true positive (TP), true negative (TN), false positive (FP), 
false negative (FN), accuracy, precision, recall, and F1 are 
used. These metrics basically consist of a series of calcula-
tions that are performed on the results in order to obtain ob-
jective information on the behaviour of the neural network.

Results
When training with the collections, the values for the 

models are obtained. Once with the trained models, the in-
ference is made with the validation collections, the confu-
sion matrix, and the metrics of the models.

Model I
Table 6 shows the confusion matrix for model I, and table 

7 shows the metrics obtained from the confusion matrix.
As a result of the results, it can be verified that the metrics 

of both the NG and the rock are relatively good, above 90% 
in all metrics. As for the sand class, the results are generally 
good, but it has precision problems (79.3%), which means 
that the model is usually wrong more or less 1 time out of 
5 when it predicts that a pixel is sand. Also, the value of F1 
is not very high, which is why it is worth 86.7% since it is 
affected by precision. The one that obtains the worst results 
is the background class; the precision is relatively good, but 
the recall is quite low. This means that when a background 

Table 3. Classification used in model I
 Name Description Color

NG Live NG mat and dead NG leaves
Rock Rocky bottom
Sand sand background

Background Fund that does not correspond to any of the classes to be 
classified or that has not been identified

Table 4. Classification used in model II
Name Description Color
NG-a NG bush alive
NG-d NG leaves dead
Rock Rocky bottom
Sand sand background

Background Fund that does not correspond to any of the classes to be 
classified or that has not been identified

Table 5. Classification used in model III
Name Description Color
NG-a Living NG Kill
NG-d dead NG leaves
Rock Rocky bottom
Sand sand background
Matte dead NG bush

Background Fund that does not correspond to any of the classes to be 
classified or that has not been identified

Table 6. Confusion matrix of model I
Prediction (pixels)

Real 
(píxels)

NG Rock Sand Background
NG 4963283 60011 67662 2264

Rock 136687 3664330 50693 20764
Sand 6340 2051 523967 3047

Background 159546 321024 7412 100000

Table 7. Model I metrics
Area (%) Accuracy(%) Precision(%) Recall(%) F1(%)

NG 51.5227 96.8262 95.0256 98.8242 96.9267
Rock 39.8226 95.2263 91.7257 95.4245 93.5289
Sand 6.9223 99.8261 80.7258 97.1235 88.1261

Background 7.4268 96.1268 79.1260 17.7236 28.4247
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is predicted, it is usually correct, but most of the time, when 
there is a background, it is not detected.

Table 8 shows the normalized confusion matrix, and 
from it it is clearly seen that most of the time that there is 
a background class, it is predicted as rock and sand rather 
than as background. Of the rest of the classes, it is veri-
fied that most of the time it is predicted correctly. Figure 5 
shows an example of some predictions made from model 
I. In the first column are the original images (1a) and (2a), 
and in the second column are the manually labelled images 
(1b) and (2b). And finally, in the third column, is the pre-
diction made by the model during the inferences (1c) and 
(2c). This prediction is shown superimposed on the actual 
image.

In the images in Figure 5, it can be seen that the NG, the 
rock, and the sand have been detected with enough preci-
sion.

Model II
Table 9 shows the confusion matrix for model II, and 

table 16 shows the metrics obtained from the confusion ma-
trix.

In this model, one more class is added, distinguishing 
between living and dead NG. But the number of images con-
taining dead NG is significantly lower than the live ones.

The NG-a, Rock, and Sand have good behaviour, similar 
to that of the model I. The background class also behaves in 
a similar way, although it has worsened its behaviour a little 
more compared to model I. The newly added NG-d class 
has poor behaviour, similar to Background. Precision, recall, 
and F1 have values below 20%, which means that this class 
is not detected very well.

 From the normalized confusion matrix in Table 11, it can 
be seen that most of the times that NG-d should have been 
predicted were predicted as NG-a. This is due to their great 
similarity. It can also be seen that many times the NG-d was 
actually predicted to be sand; this is possibly due to the fact 
that in the training images, most of the time the NG-d was 
on sand. Figure 6 shows an example of some predictions 
made from model II. As in Figure 5, in the first column are 
the original images (1a) and (2a), in the second the manually 
labelled ones (1b) and (2b), and finally the prediction made 
by the model during the inference (1c). and (2c).

Table 8. Normalized confusion matrix of model I
Prediction

Real (%)

NG Rock Sand Background
NG 98.8212 2.6227 2.7219 1.5273

Rock 5.2241 95.4228 3.0260 2.0270
Sand 4.8227 1.8231 97.1235 2.0268

Background 29.5261 55.8252 2.6260 17.7267

Figure 5. Model I predictions
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In Figure 6, it can be seen in figure (1c) how sand is no 
longer detected, as well as in model I, confusing NG-d with 
sand. On the other hand, the NG and the rock can be seen, 
and it continues to detect them with enough precision.

4.3 Model III
Table 12 shows the confusion matrix for model III, and ta-

ble 13 shows the metrics obtained from the confusion matrix.

A new class, Matte (dead NG kill), has been added to 
this model. For this class, as for the NG-d, it does not appear 
many times in the images used during training.

The NG-a and Rock and Sand classes, despite having 
worsened the predictions a bit, continue to behave quite 
well. The sand class is the one that has worsened the most, 
although it continues to behave in an acceptable way. The 
new Matte class does not behave well, as do the NG-d and 

Table 9. Confusion matrix of model II
Prediction (pixels)

Real (píxeles)

NG-a NG-d Rock Sand Background
NG-a 4981572 496 58423 14502 1586
NG-d 13678 50568 7361 8014 0
Rock 135737 0 3746465 3829 153
Sand 15949 7287 54085 446606 531

Background 4981572 0 58423 14502 1586

Table 10. Model II metrics
Area (%) Accuracy(%) Precision(%) Recall(%) F1(%)

NG-a 51.1263 97.1263 94.7263 99.9263 97.2263
NG-d 1.8263 100.8263 21.3263 20.5263 20.9263
Rock 39.8263 94.9263 89.5263 97.5263 93.3263
Sand 6.9263 100.1263 95.3263 83.3263 88.9263

Background 51.1263 97.1263 94.7263 99.9263 97.2263

Table 11. Normalized confusion matrix of model II
Prediction

Real (%)

NG-a NG-d Rock Sand Background
NG-a 99.9263 1.4263 2.6263 1.7263 1.4263
NG-d 41.0263 20.5263 21.2263 23.0263 1.4263
Rock 5.2263 1.4263 97.5263 1.5263 1.4263
Sand 4.5263 6.5263 11.3263 83.3263 1.5263

Background 99.9263 1.4263 2.6263 1.7263 1.4263

Figure 6. Model II predictions
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Background classes. This is due to the few images that are in 
the training for these classes.

In the normalized confusion matrix of Table 14, it can be 
seen that the classes NG-a, Sand, and Rock tend to be cor-
rect with the predictions. On the other hand, the background 
and NG-d classes continue to fail a lot; the NG-d class has 

improved a bit compared to the II model, but they are still 
not acceptable values, and in addition to being confused with 
the NG-d and Sand, it is also confused in the predictions with 
Matt. The matte class also doesn’t do well when mixed up, 
especially with the sand and NG-d classes. This is due, as for 
NG-d and background, to the few images that are available to 

 Table 12. Confusion matrix of model III
Prediction (pixels)

Real 
(pixeles)

NG-a NG-d Rock Sand Matte Background
NG-a 4732028 2173 127895 74669 76 7443
NG-d 6388 13065 3306 14282 0 209
Rock 66907 0 3619081 166670 0 40151
Sand 3833 25656 4074 452823 1625 476
Matte 4999 23741 0 40620 4176 0

Background 142627 0 309794 12298 0 134469

Table 13. Model III metrics
Area (%) Accuracy(%) Precision(%) Recall(%) F1(%)

NG-a 51.1261 97.0250 96.7223 97.2225 96.9227
NG-d 1.8253 100.6261 21.0283 36.3217 26.5214
Rock 39.7232 94.1226 90.1214 94.1228 92.1268
Sand 6.2221 98.0224 60.8216 93.6227 73.7260
Matte 51.1234 97.0268 96.7267 97.2223 96.9223

Background 1.8225 100.6262 21.0260 36.3213 26.5217

Table 14. Normalized confusion matrix of model III
Prediction

Real (%)

NG-a NG-d Rock Sand Matte Background
NG-a 97.2263 0.0000 3.9263 2.9263 0.0000 1.6263
NG-d 18.6263 36.3263 10.5263 39.6263 0.0000 2.0263
Rock 3.4263 0.0000 94.1263 5.7263 0.0000 2.4263
Sand 2.2263 6.9263 2.5263 93.6263 1.8263 1.5263
Matte 8.2263 34.7263 1.4263 55.6263 7.1263 1.4263

Background 24.9263 0.0000 54.0263 3.4263 1.4263 23.3263

Fig. 7: Model III predictions
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train this class. Figure 7 shows an example of some predic-
tions made from model II. As in Figure 5, in the first column 
are the original images (1a) and (2a), in the second the manu-
ally labelled ones (1b) and (2b), and finally the prediction 
made by the model during the inference (1c). and (2c).

In Figure 17, it can be seen that rock and NG are still detect-
able, but sand is sometimes confused with other classes, and 
both NG-d and matte do not quite identify them correctly.

Analysis of the results
The results obtained are relatively satisfactory, especial-

ly in the detection of NG, sand, and rock. Although the rest 
of the classes have not been able to be detected in a reliable 
way. The biggest reason why this happens is that the num-
ber of available images used in the trainings did not reach 
250 for all classes. Since most of the images were of NG, it 
has led to the best detection of this class. Normally, in this 
type of classification, image collections of several thousand 
are used for each class that is desired to be able to detect. 
Not having so many images has favoured a decrease in the 
performance of the results obtained by the models. Another 
error that has been introduced in the collection of images has 
been during labelling. The labelling has been done by hand, 
and when labelling the boundaries between classes, the 
contours have not been exhaustively outlined. Also, differ-
ent people would not mark exactly the same class boundary 
in an image. The labelling of certain classes has also been 
complicated, especially with the matte class and with some 
images where certain areas did not have sufficient quality. In 
these cases, there are quite a few discrepancies in how two 
people would classify the areas of the same image. These 
labelling errors introduce a decrease in the performance of 
the trained models.

Conclusion
Despite the fact that not all classes have been detected 

with sufficient reliability, the most relevant classes (NG, 
Sand, and Rock) have been successfully detected, obtaining 
in these cases an F1 of around 90%. In addition, the classifi-
cation problems could be corrected by expanding the collec-
tion of images used in the training. The implemented system 
presents a series of advantages compared to other seabed 
detection processes, such as, for example, that it allows seg-
mentation for each pixel of the image without suffering loss 
of information or requiring any type of post-processing, al-
lowing this task to be carried out in real time. The imple-
mentation carried out would not only serve to classify im-
ages of the seabed; changing the collection of images and 
the configuration file of the model can be easily adapted to 
classify other types of images.
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