Geodynamical comparative study regarding the salt domes of two different depositional environments: Mexico and Romania
DOI:
https://doi.org/https://doi.org/10.5719/GeoP.7/1Cuvinte cheie:
Diapirism, Prahova, Subcarpathians, Romania, MexicoRezumat
Salt diapirs are geological formations that appear in the subsurface and are formed over millions of years. Such formations occur due to the density difference between the salt and the surrounding rock. The density difference causes the salt to penetrate throughout the strata and, therefore, the salt rises to the surface in a process known as diapirism. The importance of salt domes, structures that form because of diapirism, lies on the fact that due to the impermeability of the salt and the deformation associated with the ascent of these structures, salt domes become excellent oil traps, with important reserves. Therefore, it is important to know the conditions that dominate the development of salt domes as well as their evolution and formation environments. If the subsurface is considered as a continuum and by means of the momentum equations, Newton's second law and the heat conservation equation, in addition to an Eulerian approach to matter, numerical models showing the evolution of salt domes can be created, and thanks to them, the parameters that influence the formation of the domes can be calculated. In this work it is concluded that some of the parameters that determine the formation and ascent of the diapir are the width and height of the initial Gaussian anomaly, the viscosity of the salt, the temperature, and the thickness of the salt layer.Referințe
Benavides García, L. (1983). DOMOS SALINOS DEL SURESTE DE MÉXICO Origen: Exploración: Importancia Económica. Boletin de La Asociación Mexicana de Geólogos Petroleros, 35(1), 9–35.
Frisch, W., Meschede, M., & Blakey, R. C. (2010). Plate tectonics: continental drift and mountain building. Springer Science & Business Media.
Halbouty M.T. (2002). Spindletop: The Original Salt Dome. World Energy Magazine, 3(2), 108–112.
Harris, G. D., & Veatch, A. C. (1899). A preliminary report on the geology of Louisiana, in Geological Survey of Louisiana report: Baton rouge.
Hippolyte, J.-C., & Sandulescu, M. (1996). Paleostress characterization of the "Wallachian phase" in its type area (southeastern Carpathians, Romania). Tectonophysics, 263(1–4), 235–248.
How Salt Domes Were Created | Magna Resources Management Corporation. (n.d.). Retrieved December 5, 2021, from http://www.magna-resources.com/ history-of-salt-domes
Istoria Romaniei (Vol. 2). (1960).
Jackson, M. P. A., & Hudec, M. R. (2017a). Evaporites and Their Deposition. In Salt Tectonics (pp. 12–27). Cambridge University Press. https://doi.org/10.1017/ 9781139003988.004
Jackson, M. P. A., & Hudec, M. R. (2017b). Introduction. In Salt Tectonics (pp. 2–11). Cambridge University Press. https://doi.org/10.1017/978113 9003988.003
Jackson, M. P. A., & Hudec, M. R. (2017c). Salt Flow. In Salt Tectonics (pp. 28–60). Cambridge University Press. https://doi.org/10.1017/9781139003988.005
Jackson, M. P. A., & Talbot, C. J. (1986). External shapes, strain rates, and dynamics of salt structures. Geological Society of America Bulletin, 97(3), 305–323. 10.1130/0016-7606(1986)97<305:ESSRAD>2.0.CO;2
Krézsek, C., & Bally, A. W. (2006). The Transylvanian Basin (Romania) and its relation to the Carpathian fold and thrust belt: Insights in gravitational salt tectonics. Marine and Petroleum Geology, 23(4), 405–442.
https://doi.org/https://doi.org/10.1016/j.marpetgeo.20 06.03.003.
Lawton, T. F., Vega, F. J., Giles, K. A., & Rosales– Domínguez, C. (2001). Stratigraphy and Origin of the La Popa Basin, Nuevo León and Coahuila, Mexico, in Bartolini, C., Buffler, R.T., Cantu–Chapa, A. (eds.), The Western Gulf of Mexico Basin: Tectonics, sedimentary basins, and petroleum systems: Tulsa, Oklahoma, U. S. A. American Association of Petroleum Geologists Memoir, 75, 219–240. Lopez-Ramos, E. (1982). Geología de México: Vol. II. Consejo Nacional de Ciencia y Tecnología.
Maftei et al. (2009). New aspects concerning geoelectrical tests on shallow landslides in Telega, Romania. EGU General Assembly 2009, Held 19-24 April, 2009 in Vienna, Austria Http://Meetings. Copernicus.Org/Egu2009, 3397–3397.
Mrazec, L. (1907). Despre cute cu simbure de străpungere [On folds with piercing cores]. Buletinul Societății de Științe Din București, 16, 6–8.
NOAA. (n.d.). What are the horse latitudes? National Ocean Service Website. Retrieved October 1, 2020, from https://oceanservice.noaa.gov/facts/horselatitudes.html#:~:text=The%20horse%20latitudes%20are%20regions,calm%20winds%20and%20little%20precipitation.&text=Unable%20to%20sail%20and%20resupply,ran%20out%20of%20drinking%20water.
Pindell, J., Villagómez, D., Molina-Garza, R., Graham, R., & Weber, B. (2021). A revised synthesis of the rift and drift history of the gulf of mexico and surrounding regions in the light of improved age dating of the middle jurassic salt. In Geological Society Special Publication (Vol. 504, Issue 1, pp. 29–76). Geological Society of London. https://doi. org/10.1144/SP504-2020-43.
Roelofse, C., Alves, T. M., & Gafeira, J. (2020). Structural controls on shallow fluid flow and associated pockmark fields in the East Breaks area, northern Gulf of Mexico. Marine and Petroleum Geology, 112(1).
Rowan, M. G., Lawton, T. F., Giles, K. A., & Ratliff, R. A. (2003). Near-salt deformation in La Popa basin, Mexico, and the northern Gulf of Mexico: A general model for passive diapirism. AAPG Bulletin, 87(5), 733–756.
Tămaș, D. M. (2018). Salt tectonics in the Eastern Carpathian Bend Zone, Romania. Babeș-Bolyai University.
Tămaș, D. M., Krezsek, C. & Schleder, Z. G. (2015). 3D diapir modeling in the type area for salt diapirism, preliminary results (Moreni, Romania). 40–49. https://doi.org/10.13140/RG.2.1.2988.9362.
Tamez-Ponce, A., Yutsis, V., Krivosheya, K., Román, E., Flores, H., Bulychev, A. A., Vargas, A. T., Linares, N., & León, M. (2011). Boletín de la Sociedad GeolóGica Mexicana VoluMen 63 (Issue 2).
Vassiliou, M. (2018). Historical dictionary of petroleum industry (2da edición). Lanham MD: Rowman and Littlefield-Scarecrow Press.
Vega, F. J., & Lawton, T. F. (2011). Upper Jurassic (Lower Kimmeridgian-Olvido) carbonate strata from the La Popa Basin diapirs, NE Mexico. Boletín de La Sociedad Geológica Mexicana, 63(2), 313–321. http://boletinsgm.igeolcu.unam.mx/bsgm/index.php/1 44-sitio/articulos/cuarta-epoca/6302/507-6302-11-vega.
Warren, J. (1999). Evaporites: Their Evolution and Economics. Blackwell Science.
Warren, J. K. (2010). Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. In Earth-Science Reviews (Vol. 98, Issues 3–4, pp. 217–268). https://doi.org/10.1016/ j.earscirev.2009.11.004.